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a b s t r a c t 

Nearly singular boundary integrals are involved in many applications of BEM, such as thin structures and contact 

problems. Therefore, the accurate evaluation of such integrals is an important aspect during the successful im- 

plementation of BEM. Recently, a conformal mapping for triangular elements has been constructed to eliminate 

the distorted shape influence and applied to deal with singular integrals. In this paper, the conformal mapping 

is extended to deal with the nearly singular integrals over triangular elements by combination of the distance 

transformation proposed by Ma and Kamiya. An improved sigmoidal transformation is employed to rearrange 

Gaussian points in angular direction more judiciously, and the conformal mapping is introduced to eliminate the 

distorted shape influence for elements with large aspect ratio or peak/obtuse angles. Extensive numerical tests 

and comparisons for both planar and curved triangular elements are given to demonstrate the high efficiency and 

competitiveness of the method presented in this paper. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The implementation of boundary-type methods involves many nu- 

merical integrals over lines or surfaces [1–4] . These integrals can be gen- 

eralized into three categories depending on the relative position from 

source point to integral elements, i.e. the regular, singular and nearly 

singular integrals. For the regular integrals, the Gaussian quadrature can 

be used directly. For the singular cases, several methods have been de- 

vised to improve the accuracy of numerical evaluation, such as the reg- 

ularization technique [5] , the singularity subtraction method [6,7] and 

other methods [8–10] . However, for the nearly singular integrals, a uni- 

fied and efficient strategy does not seem to be mentioned in current 

literature despite the extensive efforts. Accurate computation of nearly 

singular integrals plays an important role in many engineering applica- 

tions, especially for thin structures [11] , unknowns around crack tips 

[12] , the contact and sensitivity problems [13,14] . 

In this paper, the nearly singular integrals are concerned. Theoreti- 

cally, nearly singular integrals are regular in nature since the values of 

the integrand are always limited. The near singularity is caused by the 

drastically spiked variation of the integrand, thus the standard Gaus- 

sian quadrature cannot be used in a straightforward way. In the past 

decades, various numerical techniques have been proposed to remove 

or damp out the near singularities, such as the element subdivision tech- 

niques [15,16] , the regularization methods [17,18] , analytical and semi- 
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analytical algorithms [19,20] , and various nonlinear transformations 

[21–32] . The element subdivision techniques are stable and accurate 

but not recommended because of its inefficient, especially for the case 

when the source point lies very close to integral element. The regular- 

ization methods translate the singular integrals into non-singular ones 

and can fully remove the singularity, however, the displacement deriva- 

tives at the boundary image point should be obtained in advance. The 

analytical and semi-analytical algorithms are effective but only limited 

to linear or planar elements. Curved elements must be divided into a 

large number of linear or planar elements, thus losing efficiency and 

accuracy. 

At present, the most widely used methods are various non-linear 

transformations, such as the cubic polynomial transformation [21] , the 

PART method [22] , the distance transformation [23–25] , the sinh trans- 

formation [26–29] and the exponential transformation [30–32] etc. The 

main idea of the aforementioned non-linear transformations is to re- 

move or damp out the near singularity by non-linear transformations 

before conventional Gaussian quadrature is applied. Non-linear trans- 

formations have been employed to deal with nearly singular integrals 

with different orders in 2D and 3D BEM, and attractive results can be 

observed. 

However, two difficulties would be encountered when evaluating 

nearly singular integrals for 3D surface elements. First, the precision 

would decline dramatically when the source point lies very close to the 
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boundary of integral element. Schwab et al. [33] noted this point dur- 

ing the evaluation of singular boundary integrals, and Scuderi [34] re- 

split the sub-triangles which contain angles greater than 2 𝜋/3 for planar 

elements. In this paper, an improved sigmoidal transformation is con- 

structed based on the previous work of Johnston [35] , which can re- 

arrange the Gaussian points in angular direction more judiciously. An- 

other problem is the sensitivity to element shape. Taking triangular el- 

ements as example, almost all of the examples in current literature are 

based on unit triangular element. However, for elements with distorted 

shape, such as elements with large aspect ratio or peak/obtuse angles, 

the exiting non-linear transformations would be of lower efficiency. In 

this paper, the conformal transformation derived from Rong’s excellent 

work [36] is introduced to eliminate the distorted shape influence. The 

two proposed strategies, when combined with existing distance trans- 

formation, will generate an efficient and competitive method for nearly 

singular integrals. 

The paper is organized as follows. A general description of nearly 

singular integrals and the conventional distance transformation are re- 

viewed briefly in Section 2 . Section 3 constructs an improved sigmoidal 

transformation with emphasis on comparisons with the simple one. 

Section 4 finds out the origin of shape sensitivity and deduces the con- 

formal transformation in details which can eliminate the distorted shape 

influence. Numerical examples for triangular elements with both regular 

and irregular shape are presented in Section 5 to demonstrate the high 

efficiency and competiveness of the method presented in this paper. The 

paper ends with conclusions in Section 6 . 

2. Background 

2.1. General description of nearly singular integrals 

Considering a 3D domain Ω enclosed by boundary Γ, the displace- 

ment boundary integral equation for potential problems can be written 

in terms of the potential u and the flux q as follows: 

𝑐( 𝐲 ) 𝑢 ( 𝐲 ) = ∫Γ 𝑞( 𝐱 ) 𝑢 ∗ ( 𝐱 , 𝐲 )dΓ( 𝐱 )− ∫Γ 𝑢 ( 𝐱 ) 𝑞 ∗ ( 𝐱 , 𝐲 )dΓ( 𝐱 ) (1) 

where y and x are the source point and field point, respectively. c ( y ) is 

the coefficient depending on the smoothness of the boundary at point y . 

u ∗ ( x, y ) represents the fundamental solution for 3D potential problems, 

and q ∗ ( x, y ) is the derived fundamental solution with respect to unit 

outward normal n . The detailed forms of u ∗ ( x, y ) and q ∗ ( x, y ) are given 

as 

𝑢 ∗ ( 𝐱 , 𝐲 ) = 

1 
4 𝜋𝑟 ( 𝐱 , 𝐲 ) 

, 𝑞 ∗ ( 𝐱 , 𝐲 ) = − 

1 
4 𝜋𝑟 2 ( 𝐱 , 𝐲 ) 

𝜕𝑟 ( 𝐱 , 𝐲 ) 
𝜕𝐧 

(2) 

where r ( x, y ) denotes the Euclidean distance between the source point 

and field point. 

After the boundary discretization and transformation to local coor- 

dinate ( 𝜉1 , 𝜉2 ), the integrals in Eq. (1) can be generally written as 

I = ∫
+1 

−1 ∫
+1 

−1 

𝑓 ( 𝜉1 , 𝜉2 ) 
𝑟 𝜒

d 𝜉1 d 𝜉2 (3) 

where 𝜒 denotes the order of r in fundamental solutions, 𝜒 = 1, 2 and f is 

a well-behaved function, consisting of the shape function, Jacobian and 

coefficients from the derivation of the kernels. When the source point 

is very close to integral element, the denominator r 𝜒 tends to be zero, 

resulting in nearly singular integrals with different orders, namely, the 

nearly weak singularity with kernel u ∗ and the nearly strong singularity 

with kernel q ∗ . 

2.2. Distance transformation 

The first step of distance transformation is to find the projection point 

x c as shown in Fig. 1 (a), i.e. the nearest point from the source point to 

integral element, and the nearest distance is denoted as r 0 . Then, the 

relationship between the distance r and the local polar coordinate ( 𝜌, 𝜃) 

Fig. 1. Distance transformation (a): Global coordinate; (b): Local coordinate. 

can be obtained via Taylor expansion in the neighborhood of projection 

point 𝝃c : 

𝑟 2 ( 𝜌, 𝜃) = 𝑟 2 0 + 𝜌2 𝐴 

2 ( 𝜃) + 2 𝑟 0 𝐴 𝑘 ( 𝜃) 𝑛 𝑘 ( 𝛏𝑐 ) + 𝑂( 𝜌3 ) 

= 𝐴 

2 ( 𝜃)[ 𝜌2 + 𝛼2 ( 𝜃)] + 𝑂( 𝜌3 ) (4) 

where 

𝐀 ( 𝜃) = 

𝜕 𝐱 
𝜕 𝜉1 

|𝐱 = 𝐱 𝑐 cos 𝜃 + 

𝜕 𝐱 
𝜕 𝜉2 

|𝐱 = 𝐱 𝑐 sin 𝜃 (5) 

𝐴 ( 𝜃) = |𝐀 ( 𝜃) | (6) 

𝛼( 𝜃) = 

𝑟 0 
𝐴 ( 𝜃) 

(7) 

Substituting Eq. (4) into Eq. (3) yields 

I = 

𝑛 ∑
𝑖 =1 

∫
𝜃2 

𝜃1 
∫

𝜌𝑚 ( 𝜃) 

0 

𝑓 ( 𝜌, 𝜃) 
𝐴 

𝜒 ( 𝜃) [ 𝜌2 + 𝛼2 ( 𝜃)] 𝜒∕2 
𝜌d 𝜌d 𝜃 (8) 

where n is the total number of sub-triangles, and 𝜃1 , 𝜃2 and 𝜌m 

( 𝜃) rep- 

resent the radial and angular span for each sub-triangle, respectively. 

For regular triangular elements, the near singularity only occurs in 

the radial direction and the distance transformation expressed as 

𝜂( 𝜌, 𝜃) = log [ 
√

𝜌2 + 𝛼2 ( 𝜃) ] (9) 

𝜌( 𝜂) = 

√ 

exp (2 𝜂) − 𝛼2 ( 𝜃) (10) 

is proposed to deal with the near singularity in Eq. (8) . By plugging 

Eqs. (9) and (10) into Eq. (8) , we can obtain 

I = 

𝑛 ∑
𝑖 =1 

∫
𝜃2 

𝜃1 
∫

ln [ 
√

𝜌2 𝑚 ( 𝜃)+ 𝛼2 ( 𝜃) ] 

ln ( 𝛼) 

𝑓 [ 𝜌( 𝜂) , 𝜃] 
𝐴 

𝜒 ( 𝜃) [ 𝜌2 ( 𝜂) + 𝛼2 ( 𝜃)] ( 𝜒−2)∕2 
d 𝜂d 𝜃 (11) 

From Eq. (11) , we can see that the nearly singular integrand is trans- 

formed into 1 
𝐴 ( 𝜃) 

√
𝜌2 + 𝛼2 ( 𝜃) 𝑓 ( 𝜌, 𝜃) when 𝜒 = 1 , or 1 

𝐴 2 ( 𝜃) 𝑓 ( 𝜌, 𝜃) when 

𝜒 = 2, which are both well-behaved functions of 𝜌 for elements with 

regular shape. Therefore, the near singularity resulted from 𝜌 can be 

damped out by distance transformation. 

3. Sigmoidal transformation 

Using the above-mentioned distance transformation formula, the 

nearly singular integrals can be evaluated with high accuracy when the 

projection point 𝝃c lies around the center of integral element. However, 

numerical tests show that the accuracy of nearly singular integral will 

decline dramatically when the projection point 𝝃c gradually approaches 

the boundary of integral element, which will be proved in Section 5.1 . 

According to the geometrical relationship in Fig. 2 (a), the radial span 

𝜌m 

( 𝜃) can be written as 

𝜌𝑚 ( 𝜃) = 

ℎ 

cos ̄𝜃
(12) 

where h is the perpendicular distance from the projection point 𝝃c to the 

opposite side for each sub-triangle, and �̄� is the angle from the perpen- 

dicular to the field point 𝝃x . When the projection point 𝝃c approaches 

2 



Download English Version:

https://daneshyari.com/en/article/6925005

Download Persian Version:

https://daneshyari.com/article/6925005

Daneshyari.com

https://daneshyari.com/en/article/6925005
https://daneshyari.com/article/6925005
https://daneshyari.com

