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a b s t r a c t 

Based on the meshless local Petrov–Galerkin (MLPG) method, a thermo-elasto-plastic analysis of solidification 
problem is presented. The effect of significant parameters of the MLPG method, including the size and shape of 
sub-domain and support domain, nodal arrangement, nodal density and Gaussian points on the solution accuracy 
of the problems is investigated to determine their optimal values. The local weak forms are derived by considering 
a Heaviside step function as the test function. To interpolate the solution variables, the moving least-squares (MLS) 
approximation is applied. Using the effective heat capacity method, thermal analysis of the solidification process 
is performed. The von-Mises yield criterion and isotropic hardening model are employed for the elasto-plastic 
behavior, and material parameters are assumed to be temperature-dependent. To demonstrate the capability of 
the present method in solving solidification problems, the obtained results have been compared with the analytical 
and accurate finite element method solutions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Meshless methods have attracted a lot of attention in the past two 
decades, due to their ability to eliminate the burdensome effort of 
mesh generation. The meshless local Petrov–Galerkin (MLPG) approach, 
which was proposed by Atluri and Zhu in 1998 [1] , is one of the most 
successful meshless methods. The main advantage of the MLPG method 
is that it considers local weak formulation of the problem, and does 
not require a background mesh, either for the interpolation of the solu- 
tion variables or for evaluation of the integrals. Therefore, this approach 
is a “truly meshless ” method and creating the trial and test functions 
is implemented by only using local nodes. The reason for flexibility of 
the MLPG method is twofold; neither it is necessary that the trial and 
test functions be selected from completely identical functional spaces, 
nor the physical size of the test and trial domains need to be the same. 
Based on different types of test functions considered in the weak formu- 
lation, six different types of MLPG methods were introduced by Atluri 
and Shen, which are labeled as MLPG1 to MLPG6 [2] . In the present 
work, the MLPG5 method, wherein the test function is the Heaviside 
step function, is utilized. This method eliminates the necessity of do- 
main integration, and shows high robustness and precision in solving 
many engineering problems [3] . In the recent years, the MLPG method 
has been employed by many researchers in solving various types of en- 
gineering problems, such as convection-diffusion [4] , elasticity [5–7] , 
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thermoelasticity [8] , elasto-plasticity [9,10] , thermoplasticity [11] , and 
fracture [12–14] problems. Applications of the MLPG method in various 
fields of engineering and scientific problems have been reviewed in [15] . 

Since the thermo-mechanical analysis of the solidification problem 

is usually associated with many complications and difficulties [16] , 
analytical solutions are inevitably presented with many simplifying 
assumptions. In this context, Weiner and Boley [17] and Tien and 
Kaump [18] provided analytical solutions of stress distribution in a 
solidification process, which are very useful for verifying the results 
of numerical methods. Various numerical methods have been used for 
thermo-mechanical analysis of solidification problem. Williams et al. 
[19] applied the finite element method (FEM) and elasto-viscoplastic 
constitutive model to analyze the thermal stress distribution in a 
solidifying body. Heinlein et al. [20] developed the thermo-mechanical 
boundary element procedure to determine the stress field in the one di- 
mensional solidification problem. Calculation of stress and temperature 
fields in a solidifying media was performed and implemented by Zabaras 
et al. [21,22] , by using a front tracking FE model. Control-volume 
model of fluid flow and finite difference method were used to calculate 
three-dimensional thermo-elastic stresses in die casting by Cross [23] . 
To obtain temperature and stress distributions in the continuous casting 
of steel, Li and Thomas [24] employed an elastic-viscoplastic creep con- 
stitutive equation by utilizing a thermo-mechanical FE model. Samantha 
and Zabaras [25] performed a coupled thermo-mechanical FE methodol- 
ogy to analyze thermal transport and segregation of solidified aluminum 
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alloys. A collocated version of a segregated finite-volume procedure 
was developed by Teskered ž i ć et al. [26,27] , to solve the fully coupled 
heat transfer, flow, and stress formation in complete casting process. 

Despite the inherent capability of meshless methods in handling 
the phase change problems, so far, little use of them has been made 
in analysis of thermo-mechanical solidification problems. Vertnik 
et al. [28] solved a transient direct-chill aluminum casting problem 

with simultaneous material and interphase moving boundaries by using 
the explicit local radial basis function collocation method (LRBFCM). 
Simulation of continuous casting of steel in the curved strand by using 
the LRBFCM was developed by Vertnik and Š arler [29] . Sajja and 
Felicelli [30] utilized the element-free Galerkin method to simulate 
channel formation during directional solidification processes of a mul- 
ticomponent Ni–Al–Ta–W alloy. A physical model for calculating the 
macrosegregation with mesosegragates in binary metallic casts was nu- 
merically solved by Kosec and Š arler [31] , using the LRBFCM. A novel 
LRBFCM was applied to the problem of stress field calculation during 
low frequency electromagnetic field of direct-chill casting of aluminum 

alloys by Mavri č and Š arler [32] . Then they extended the LRBFCM to 
solve transient coupled thermoelasticity problems [33] . Zhang et al. 
[34] developed a combined thermo-mechanical mesh-free procedure for 
calculating the thermal stresses of continuous casting by using the finite 
point and MLPG methods. They employed the finite point method for the 
analysis of the solidification process and the MLPG method was applied 
only for the thermo-elasto-plastic analysis. Vaghefi et al. [35] performed 
a thermo-elasto-plastic MLPG analysis to study the effect of mushy zone 
thickness on residual stress formation in alloy solidification. However, 
they did not carry out any parametric study of the MLPG method. 

The optimal choice of meshless method parameters is very im- 
portant, because it can improve the convergence and accuracy of the 
method significantly [2,36] . Several studies have been performed to 
find the optimal values of MLPG method parameters in solving various 
problems. Atluri and Shen [3] investigated the effect of some significant 
parameters on solution accuracy in different types of MLPG methods. 
These parameters included size of sub-domain and support domain, 
nodal arrangement, and Gaussian points. They solved the Laplace and 
Poisson equations for the purpose of error estimation and conver- 
gence studies. Subsequently, they presented optimal values of some 
parameters of various MLPG methods in solving a fourth order partial 
differential equation [37] . Nie et al. [38] proposed a practical mathe- 
matics model to find the optimal radius for support of radial weights 
used in the MLS methods for the 4th order spline weight function. Using 
the MLPG1 method, a convergence study of a diffusion equation was 
performed to optimize the number of nodes in each support domain 
and the size of sub-domain by Sterk and Trobec [39] . Moussaoui and 
Bouziane [40] studied the effect of the sizes of support domain and sub- 
domain in solving a thin elastic plate problem by the MLPG1 method. 
However, the parametric study of the MLPG method has not yet been 
made in the thermo-mechanical analysis of solidification problems. 
Of course, such a study is feasible when both thermal and mechanical 
analyses of the problem are performed by the MLPG method. 

In this paper, a thermo-elasto-plastic MLPG analysis with paramet- 
ric study is performed for solidification problems. The effect of some 
important parameters, including the size and shape of sub-domain and 
support domain, nodal density, nodal arrangement (regular or irregular 
nodal distribution), and the number of Gaussian integration points 
on the solution accuracy of the MLPG method are also investigated 
and their optimal values are determined. In order to formulate the 
thermo-mechanical phase change problem, the local weak forms are 
developed by using a Heaviside step function as the test function and 
the moving least-squares (MLS) approximation is applied to interpolate 
the solution variables. The effective heat capacity method is adopted in 
the thermal analysis of the phase change process. In order to describe 
the elastoplastic behavior, the von-Mises yield criterion and isotropic 
hardening model are employed, and material parameters are assumed 
to be temperature-dependent. In the formulation of the problem, 

Fig. 1. The geometry and terminology of the alloy solidification problem. 

the small strain increment theory and the generalized plane strain 
condition are considered. The plastic strain increment is calculated 
according to the Prandtl–Reuss rule. In the present uncoupled nonlinear 
thermo-elasto-plastic meshless formulation, the transient temperature 
field is obtained and used as a thermal load for the calculation of the 
thermal stress distribution in the solidifying medium. To illustrate 
the validity and capability of the present meshless method in solving 
solidification problems, the obtained results have been compared with 
the analytical and accurate FEM solutions. 

2. Governing equations 

A review of the governing equations and boundary/initial conditions 
of nonlinear transient heat conduction associated with phase change 
and also elasto-plastic problems are carried out in this section. 

2.1. Governing equations of the thermal problem 

A domain Ω with the boundary Γ, which is initially occupied by a 
liquid with temperature T 0 ( x ,0) is considered. The liquid is gradually 
cooled and the solidification process begins. In alloy materials, a mushy 
zone forms between the solid and liquid phases. The solid, liquid and 
mushy zone phases of the domain are denoted by Ωs , Ωl and Ωm 

, 
respectively (see Fig. 1 ). Γs , represents the interface of the mushy zone 
and the solid phase while, Γl , denotes the interface of the mushy zone 
and the liquid phase. 

Two classical approaches for thermal modeling of the solidification 
process have been the use of front tracking methods and fixed grid 
methods [41] . In front tracking methods, the energy balance is written 
separately for each phase and the grid should be updated to match the 
solid and liquid phases at each step. In these methods a special treat- 
ment for modeling discontinuities in piecewise homogeneous media is 
required in the case of higher order modeling like in meshless approx- 
imation. There are other approaches to overcome this problem, such as 
the use of double nodes on the interface of the two phases [42,43] . The 
difficulty of front tracking methods is that remeshing of the problem 

domain is needed during the solidification process. In fixed grid ap- 
proaches, however, the energy balance equation is written for the whole 
domain [44] . The main advantage of these methods is the possible use of 
the weak formulation of the classical transient heat conduction problem. 

Based on fixed grid methods, for the whole domain Ω, the single 
energy conservation equation is expressed in terms of the enthalpy 
function [45] , as follows: [
𝑘 ( 𝐱, 𝑇 ) 𝑇 ,𝑖 ( 𝐱, 𝑡 ) 

]
,𝑖 
= 𝐻̇ in Ω, (1) 

where T, k, H , x and t are respectively, temperature, thermal conduc- 
tivity, enthalpy function or the total heat content, position of a point 
in the domain, and time. The comma followed by the index i indicates 
the partial derivative with respect to the spatial coordinate x i , and the 
superimposed dot denotes the partial derivative with respect to time t . 

11 



Download English Version:

https://daneshyari.com/en/article/6925007

Download Persian Version:

https://daneshyari.com/article/6925007

Daneshyari.com

https://daneshyari.com/en/article/6925007
https://daneshyari.com/article/6925007
https://daneshyari.com

