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In this paper, we utilized the method of fundamental solutions, which is meshless and integral-free, to analyze 

the non-linear Berger equation for thin elastic plate. Based on the proposed numerical scheme, the deflection 

can be expressed as the linear combination of the homogeneous solution and the particular solutions. The par- 

ticular solution, based on the polyharmonic splines, is derived and then the spatial-dependent loading term of 

the Berger equation can be approximated by the polyharmonic splines. After the particular solution is obtained, 

the homogeneous solution, which is governed by the homogeneous partial differential equations, can be solved 

by the method of fundamental solutions. Several numerical examples are adopted to demonstrate the flexibility 

and robustness of the proposed meshless scheme, especially the irregular plate with spatial-dependent loading 

function. Furthermore, we also performed the convergence test for various orders of the polyharmonic splines. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The von Karman equations and the Berger equation are known as the 
governing equations for large deflection bending [1,2] . Since the Berger 
equation is decoupled in comparison with the von Karman equations, 
it has been applied to static and dynamic deflection problems. If the 
edge of the plate is rigidly clamped or hinged, the Berger equation is 
easy to apply and reasonable results can be easily obtained by using 
this equation. 

Due to the non-linearity of the Berger equation, the numerical meth- 
ods are necessary to approximate the solutions. Since the Berger equa- 
tion was first proposed in 1955, a number of numerical methods have 
been proposed, such as the boundary integral equation method [3] , 
the boundary element method [4] , the dual reciprocity boundary el- 
ement method [5] , the point-matching method [6] , the local bound- 
ary integral equation method [7] , the charge simulation method [8] , 
to name just a few. During the past two decades, the meshless meth- 
ods have made significant advances for solving various types of sci- 
ence and engineering problems due to the simplicity and effectiveness 
of many newly-developed numerical algorithms. Among them, in re- 
cent years, the radial basis functions (RBFs) have become very pop- 
ular in the research area of meshless methods. The RBF collocation 
method was pioneered by Kansa [9] in 1990 and is widely circulated 
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in the science and engineering community. Another major development 
of RBFs for numerically solving partial differential equations (PDEs) is 
the use of the method of particular solutions (MPS) and the method 
of fundamental solutions (MFS). Coupling the MFS with the MPS, the 
RBF meshless method has stronger mathematical foundation. We notice 
that most of the methods mentioned at the beginning of this paragraph 
are related to the boundary integral equations or the boundary element 
methods. One of the major reasons of using boundary-type methods for 
solving the Berger equation is that its fundamental solution is avail- 
able. However, the boundary discretization and the difficulty of singular 
or hyper-singular integrations involved in these boundary-type meth- 
ods are very challenging. Furthermore, for inhomogeneous or nonlin- 
ear problems, the domain integral is required which makes these tra- 
ditional boundary-type methods very tedious and inefficient. The MFS- 
MPS meshless method has been proved to be very effective in dealing 
with the above issues. In general, when the fundamental solution and 
the particular solution of a given PDE are available, the problems can be 
effectively solved. As we know, the fundamental solution of the Berger 
equation is already known. However, the evaluation of the particular 
solution is a delicate issue. 

The MFS is an effective boundary-type meshless method for solv- 
ing homogeneous equations. The MFS was first proposed by Kupradze 
and Aleksidze [10] in 1964. After its numerical implementation was 
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proposed by Mathon and Johnston [11] in the 1970 ’s, the MFS started 
attracting attention in the science and engineering community. In the 
1980 ’s, Fairweather and Karageorghis [12] extensively applied the MFS 
for solving various types of elliptic boundary value problems. At this 
stage, the MFS is only applicable for solving homogeneous PDEs. In 
the 1990 ’s, Golberg and Chen [13] made a breakthrough by extending 
the MFS for solving inhomogeneous problems through the use of RBFs 
and later further extended it to nonlinear and time-dependent problems 
[14] . Since then, the MFS has re-emerged and attracted great atten- 
tion in the science and engineering community. Three review papers 
[12,15,16] have been devoted to the development of the MFS. For in- 
homogeneous equation, the MPS is required to obtain the approximate 
particular solution. Once the MPS is adopted as the numerical scheme, 
the closed-form RBF for particular solution should be derived, which is 
not trivial. In this paper, we devoted our effort to deriving the closed- 
form particular solution for the Berger equation using RBFs and then 
applying the MFS to find the homogeneous solution. We first solved the 
linear Berger equation, and then extended the proposed method to non- 
linear case. 

This paper is organized as follows. In Section 2 , the Berger equation 
for deflection of thin elastic plate is described. In Section 3 , we briefly 
review the MPS and then derive a closed-form particular solution for 
the Berger equation through the well-established RBF particular solu- 
tions for the Laplacian and the modified Helmholtz operators. Without 
going through the tedious derivation using the whole Berger differential 
operator, we can derive the closed-form particular solution by simple al- 
gebraic manipulation; i.e., the beauty of our derivation is simple. Even 
though the fundamental solution of the Berger equation is known, we 
can obtain the fundamental solution in a similar way as the particu- 
lar solution. In Section 4 , three examples for linear and nonlinear cases 
are provided to demonstrate the effectiveness of the proposed method. 
Some concluding remarks are placed in the last section. 

2. Governing equation 

Let Ω be a simply-connected domain bounded by 𝜕Ω. The non-linear 
Berger equation for the deflection, u ( x ), of the thin elastic plate is ex- 
pressed as follows: (
Δ2 − 𝛽2 Δ

)
𝑢 ( 𝐱 ) = 

𝑞 ( 𝐱 ) 
𝐷 

, 𝐱 ∈ Ω, (1) 

where D is the bending rigidity of plate, and 𝛽2 is the Berger constant. 
Δ is the Laplacian and q ( x ) is the transverse pressure. 

If the Berger constant is a known constant, the above equation is a 
linear PDE. The Berger constant is normally related to the derivatives of 
the deflection and is expressed as follows: 

𝛽2 = 

6 
𝑠ℎ 2 ∫ ∫𝑠 

[ ( 

𝜕𝑢 ( 𝐱 ) 
𝜕𝑥 

) 2 
+ 

( 

𝜕𝑢 ( 𝐱 ) 
𝜕𝑦 

) 2 
] 

𝑑𝑠, (2) 

where s is the area of domain and h is the thickness of the plate. 
Since the Berger constant must be calculated from the deflection of 

the plate, u ( x ), Eq. (1) becomes a non-linear PDE. The governing equa- 
tion in (1) subjects to the following boundary conditions: 

 1 𝑢 ( 𝐱 ) = 𝑓 1 ( 𝐱) , 𝐱 ∈ 𝜕Ω, (3) 

 2 𝑢 ( 𝐱 ) = 𝑓 2 ( 𝐱) , 𝐱 ∈ 𝜕Ω, (4) 

where  1 and  2 are the boundary operators, and f 1 ( x ) and f 2 ( x ) are 
known functions. 

3. Numerical methods 

3.1. The method of particular solutions 

Although the MFS is a meshless, integral-free, non-singular, and 
boundary-type method, it can only be used to solve homogeneous prob- 
lems. There are a number of methods to extend the MFS for solving 

inhomogeneous problems. The MPS is one of the effective methods for 
this purpose. First, the solution, u ( x ), of (1) – (4) is assumed as the lin- 
ear combination of the particular solution, u p ( x ), and the homogeneous 
solution, u h ( x ); i.e., 

𝑢 ( 𝐱 ) = 𝑢 𝑝 ( 𝐱 ) + 𝑢 ℎ ( 𝐱 ) . (5) 

The particular solution satisfies the inhomogeneous governing equation, 
but does not necessarily satisfy the boundary conditions; i.e., (
Δ2 − 𝛽2 Δ

)
𝑢 𝑝 ( 𝐱 ) = 

𝑞 ( 𝐱 ) 
𝐷 

. (6) 

To obtain the particular solution, the inhomogeneous term in (6) can be 

approximated by the RBFs. Let 
{
𝐱 𝑖 
}𝑁 

𝑖 =1 be arbitrary collocation points 
containing Ω. By the RBF interpolation, we have 

𝑞 
(
𝐱 𝑖 
)

𝐷 

= 

𝑁 ∑
𝑗=1 

𝑎 𝑗 𝜙
(
𝑟 𝑖𝑗 

)
, 1 ≤ 𝑖 ≤ 𝑁, (7) 

where 
{
𝑎 𝑗 
}𝑁 

𝑗=1 are the weighting coefficients to be determined, 𝑟 𝑖𝑗 = ‖𝐱 𝑖 − 𝐱 𝑗 ‖ is the distance between the i th node x i and the j th node x j , 
and ‖ · ‖ is the Euclidean norm. This is a system of N equations with {
𝑎 𝑗 
}𝑁 

𝑗=1 unknowns. If RBF 𝜙 in (7) is positive definite, the solvability 
of the above system of equations is assured. But there are many useful 
RBFs which fail to be positive definite. For conditionally positive definite 
RBFs, one needs to add the polynomial terms to ensure the solvability 
of the matrix system of (7) . Let 𝑃 𝑑 

𝑚 −1 denote the space spanned by all 

d -variate polynomials of degree less than or equal to 𝑚 − 1 , and 
{
𝑝 𝑘 
}𝑡 
𝑘 =1 

is a basis where 

𝑡 = 

( 

𝑚 − 1 + 𝑑 

𝑑 

) 

. 

Then, the basis functions in (7) are augmented to 

𝑞 
(
𝐱 𝑖 
)

𝐷 

= 

𝑁 ∑
𝑗=1 

𝑎 𝑗 𝜙
(
𝑟 𝑖𝑗 

)
+ 

𝑡 ∑
𝑘 =1 

𝑐 𝑘 𝑝 𝑘 
(
𝐱 𝑖 
)
, 1 ≤ 𝑖 ≤ 𝑁, (8) 

𝑁 ∑
𝑗=1 

𝑎 𝑗 𝑝 𝑘 
(
𝐱 𝑗 
)
= 0 , 1 ≤ 𝑘 ≤ 𝑡, (9) 

where 
{
𝑐 𝑘 
}𝑡 
𝑘 =1 are the unknown coefficients to be determined. The solv- 

ability of the above system of equations is assured. In contrast to the 
mesh-dependent numerical methods, the interpolation points can be 
randomly distributed in the domain. Once the coefficients 

{
𝑎 𝑗 
}𝑁 

𝑗=1 and {
𝑐 𝑘 
}𝑡 
𝑘 =1 are obtained, the particular solution and its derivative terms 

with respect to x and y can be expressed as follows: 

𝑢 𝑝 ( 𝐱 ) = 

𝑁 ∑
𝑗=1 

𝑎 𝑗 Φ
(
𝑟 𝑗 
)
+ 

𝑡 ∑
𝑘 =1 

𝑐 𝑘 𝑃 𝑘 ( 𝐱 ) , (10) 

𝜕𝑢 𝑝 ( 𝐱 ) 
𝜕𝑥 

= 

𝑁 ∑
𝑗=1 

𝑎 𝑗 

𝜕Φ
(
𝑟 𝑗 
)

𝜕𝑥 
+ 

𝑡 ∑
𝑘 =1 

𝑐 𝑘 
𝜕𝑃 𝑘 ( 𝐱 ) 
𝜕𝑥 

, (11) 

𝜕𝑢 𝑝 ( 𝐱 ) 
𝜕𝑦 

= 

𝑁 ∑
𝑗=1 

𝑎 𝑗 

𝜕Φ
(
𝑟 𝑗 
)

𝜕𝑦 
+ 

𝑡 ∑
𝑘 =1 

𝑐 𝑘 
𝜕𝑃 𝑘 ( 𝐱 ) 
𝜕𝑦 

, (12) 

where (
Δ2 − 𝛽2 Δ

)
Φ( 𝑟 ) = 𝜙( 𝑟 ) , (13) 

(
Δ2 − 𝛽2 Δ

)
𝑃 ( 𝐱 ) = 𝑝 ( 𝐱 ) . (14) 

The analytical derivation of P ( x ) from (14) is easy, but the analytical 
derivation of Φ( r ) from (13) is by no means trivial. In this section, we 
adopted a simple procedure to derive the closed-form Φ( r ) for the dif- 
ferential operator of the Berger equation. If 𝛽2 is assumed to be a known 
constant, (13) can be reformulated as follows: 

Δ
(
Δ − 𝛽2 

)
Φ( 𝑟 ) = 𝜙( 𝑟 ) , (15) 
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