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a b s t r a c t 

In this work, we propose an algorithm, which combines the Method of Fundamental Solutions (MFS) and the 
Asymptotic Numerical Method (ANM), to solve two-dimensional nonlinear elastic problems. Thanks to the devel- 
opment in Taylor series, nonlinear elastic problem is transformed into a succession of linear differential equations 
with the same tangent operator. Recognizing that the fundamental solution is not always available, the Method of 
Fundamental Solutions-Radial Basis Functions (MFS-RBF) is combined with the Analog Equation Method (AEM) 
to solve these resulting linear equations. Regularization methods such as Truncated Singular Value Decompo- 
sition (TSVD) and Tikhonov regularization associated with the L-curve or Generalized Cross Validation (GCV) 
criterion have been used to control the resulting ill-conditioned linear systems. The efficiency of the proposed 
algorithm (MFS-ANM) is validated by comparing the obtained results with those of the classical algorithm based 
on the finite element method (FEM-ANM). 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Method of Fundamental Solutions (MFS) is a meshless method that 
belongs to the collocation methods. It has been proposed by Kupradze 
and Aleksidze [1] and approved its efficiency in solving homogeneous 
partial differential equations. It has been extended to inhomogeneous 
partial differential equations by using Radial Basis Functions (RBF) 
[2] to determine the particular solution. The main idea of MFS-RBF 
consists in representing the solution of the problem as a linear combina- 
tion of the fundamental solutions with respect to source points located 
outside the domain and particular solutions with respect to collocation 
points. Then, the initial problem is reduced to the determination of un- 
known coefficients of the linear combination. Marin and Daniel [3] ap- 
plied this technique for Cauchy problem in two-dimensional isotropic 
linear elasticity and controlled the conditioning of the resulting system 

of linear algebraic equations by the first-order Tikhonov regularization 
associated with the L-curve criterion. Karageorghis et al. [4] studied 
the inverse problem of coupled thermo-elasticity in the static regime. 
Sun and Marin [5] give an Invariant Method of Fundamental Solu- 
tions (IMFS) for solving boundary value problems in two-dimensional 
isotropic linear elasticity to satisfy the invariance property. 

∗ Corresponding author. 
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Furthermore, some works have investigated MFS to solve nonlin- 
ear elasticity problems. Among them, we note the works of Naffa and 
Al-Gahtani [6,7] which have used RBF method to solve nonlinear dif- 
ferential equations governing large deflection of thin plates. Recently, 
Jankowska and Ko ł odziej [8] have proposed an elasto-plastic study in 
the framework of MFS. Generally, all these works combine MFS with 
classical iterative methods as Newton–Raphson one or variants [9–12] . 
Tri et al. [13–15] have associated MFS to ANM for solving non linear 
Poisson problems and computing bifurcation branches. Asymptotic Nu- 
merical Method (ANM) is a technique developed to compute the solu- 
tion of nonlinear partial differential equations. It consists in transform- 
ing the nonlinear problem into a sequence of linear ones by expanding 
the unknowns in power series [16] . As the convergence radius limits 
the Taylor series, a continuation procedure is developed to obtain the 
whole solution [17] . ANM has proved its robustness and efficiency for 
nonlinear problems, such as: buckling of thin structures [18,19] , Navier–
Stockes equations [20,21] , unilateral contact mechanics [22–25] , plas- 
ticity problems [26,27] and other nonlinear problems. 

The aim of the proposed work is to extend this technique to non- 
linear elasticity problems taking into account large displacements. The 
strong form of the governing equilibrium equations of solids is adopted. 
In fact, the system of linear equations generated by Taylor series 
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discretized by MFS is generally ill-conditioned. Then we associate MFS 
with regularization methods based on Singular Value Decomposition 
(SVD), Tikhonov regularization method [28] and Truncated Singular 
Value Decomposition TSVD [29] . The regularization parameter is se- 
lected using the Hansen ’s L-curve method [30] and Generalized Cross 
Validation GCV criterion [31] . 

The layout of this paper is as follows. In Section 2 , we present the 
governing equations in the nonlinear elasticity and we illustrate the 
Asymptotic Numerical Method in Section 3 . After that, we show how 

to solve the resulting linear problems by using the coupling (MFS-RBF- 
AEM) in Section 4 and discussing the regularization tools in Section 5 . 
Numerical examples involving large deformation problems are pro- 
vided to show the efficiency and accuracy of the proposed algorithm 

in Section 6 . 

2. Governing equations 

The most suitable formulation for nonlinear elasticity problems is 
the Lagrangian one. This approach consists in writing the partial differ- 
ential equations in a known domain. All unknown fields are supposed 
functions of the position X of the particle in the reference configuration. 
Let us denote by Ω the domain occupied by a solid structure defining 
the reference state and by 𝜕Ω its boundary. The studied structure is sub- 
jected to prescribed displacements U 

d and traction T d on the disjointed 
complementary parts of the boundary 𝜕Ωu (Dirichlet boundaries) and 
𝜕Ωf (Neumann boundaries). The equilibrium equations and the bound- 
ary conditions are formulated with respect to a reference configuration. 
The static problem to be solved is expressed, in the absence of body 
forces, as follows: 

⎧ ⎪ ⎨ ⎪ ⎩ 
∇ . Π( 𝑋) = 0 𝑋 ∈ Ω

Π( 𝑋) ⋅ 𝑛 = 𝜆𝑇 𝑑 𝑋 ∈ 𝜕Ω𝑓 

𝑈 ( 𝑋) = 𝑈 

𝑑 𝑋 ∈ 𝜕Ω𝑢 

(1) 

where Π is the first Piola–Kirchhoff stress tensor associated with a point 
X of the domain in its reference configuration, 𝑈 = 𝑥 − 𝑋 designates the 
displacement field, x being the coordinates of a point in the deformed 
configuration, n is the outward unit normal vector to 𝜕Ω and 𝜆 is a scalar 
parameter. Moreover, we consider a linear constitutive relation taking 
into account of geometric nonlinearities. This relation can be written in 
the following form: 

𝑆 = 𝐶 ∶ 𝛾, (2) 

where C represents the fourth order elastic tensor, S is the second Piola–
Kirchhoff stress tensor linked to the first Piola–Kirchhoff stress tensor 
Π by the relation Π = 𝐹 ⋅ 𝑆, such that F is the transformation gradient 
tensor defined by 𝐹 = 𝐼 + ∇ 𝑈, with I is the second order identity ten- 
sor. The tensor 𝛾 represents the Green–Lagrange strain tensor defined 
by: 

𝛾 = 

1 
2 
( 𝑡 𝐹 ⋅ 𝐹 − 𝐼) (3) 

Our study will be limited to two-dimensional structures 𝑈 ≡ { 𝑈} = 

𝑡 < 𝑈 1 , 𝑈 2 > . Taking into account the properties of the tensors Π, S and 𝛾, 
we note Π ≡ {Π} = 

𝑡 < Π11 , Π22 , Π12 , Π21 >, 𝑆 ≡ { 𝑆} = 

𝑡 < 𝑆 11 , 𝑆 22 , 𝑆 12 > 

and 𝛾 ≡ { 𝛾} = 

𝑡 < 𝛾11 , 𝛾22 , 𝛾12 > . By introducing the generalized gradient 
vector { 𝜃} which is written as { 𝜃} = 

𝑡 < 𝑈 1 , 1 , 𝑈 1 , 2 , 𝑈 2 , 1 , 𝑈 2 , 2 >, Eqs. (1) –

(3) are rewritten as: 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

{ 𝛾} = ([ 𝐼 𝐼 ] + 

1 
2 [ 𝐴 ( 𝜃)]){ 𝜃} 𝑖𝑛 Ω

{ 𝑆} = [ 𝐶 ]{ 𝛾} 𝑖𝑛 Ω
{Π} = ([ 𝐼 𝐼 𝐼 ] + [ 𝐵 ( 𝜃)]){ 𝑆} 𝑖𝑛 Ω
[ 𝑑𝑖𝑣 ]{Π} = {0} 𝑖𝑛 Ω
[ 𝑁]{Π} = 𝜆{ 𝑇 𝑑 } 𝑜𝑛 𝜕Ω𝑓 

{ 𝑈} = { 𝑈 

𝑑 } 𝑜𝑛 𝜕Ω𝑢 

(4) 

Eq. (4) constitutes the strong formulation of the boundary value prob- 
lem, with the matrices [ A ( 𝜃)], [ B ( 𝜃)], [ III ] and [ II ] are given by: 

[ 𝐴 ( 𝜃)] = 

⎡ ⎢ ⎢ ⎣ 
𝑈 1 , 1 0 𝑈 2 , 1 0 
0 𝑈 1 , 2 0 𝑈 2 , 2 

𝑈 1 , 2 𝑈 1 , 1 𝑈 2 , 2 𝑈 2 , 1 

⎤ ⎥ ⎥ ⎦ ; [ 𝐵 ( 𝜃)] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑈 1 , 1 0 𝑈 1 , 2 
0 𝑈 2 , 2 𝑈 2 , 1 
0 𝑈 1 , 2 𝑈 1 , 1 

𝑈 2 , 1 0 𝑈 2 , 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
; 

[ 𝐼 𝐼 ] = 

⎡ ⎢ ⎢ ⎣ 
1 0 0 0 
0 0 0 1 
0 1 1 0 

⎤ ⎥ ⎥ ⎦ ; [ 𝐼 𝐼 𝐼 ] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 0 0 
0 1 0 
0 0 1 
0 0 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (5) 

where 𝑈 𝑖,𝑗 = 

𝜕𝑈 𝑖 
𝜕𝑥 𝑗 

( 𝑖, 𝑗 = 1 , 2) indicates the derivative of the component U i 

with respect to 𝑗 th variable. The behavior matrix [ C ] for a homogeneous 
and isotropic elastic material is written as follows: 

[ 𝐶] = 

𝐸 

1 − 𝜈
2 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 𝜈 0 
𝜈 1 0 

0 0 1 − 𝜈

2 

⎤ ⎥ ⎥ ⎥ ⎦ , (6) 

where 𝐸 = 𝐸 and 𝜈 = 𝜈 for the plane stress state, 𝐸 = 𝐸∕(1 − 𝜈2 ) and 
𝜈 = 𝜈∕(1 − 𝜈2 ) for the plane strain state, E and 𝜈 are respectively the 
Young ’s modulus and the Poisson ’s ratio. 

3. Asymptotic Numerical Method (ANM) 

In this section, we apply the ANM algorithm to solve the nonlinear 
problem (4) . The basic idea of ANM consists in searching the solution 
branches of the nonlinear problem in the form of a truncated Taylor ex- 
pansion from a known and regular solution ( 𝕌 0 , 𝜆0 ) . More details on this 
procedure are given in the following references [13,16,32] . To facilitate 
the illustration of the ANM algorithm, we collect all the unknowns into 
a single vector 𝕌 = 

𝑡 < Π, 𝜃, 𝑆, 𝛾, 𝑈 > . To solve the nonlinear static prob- 
lem (4) , we seek the solution in the form of a truncated Taylor series 
expansion with respect to a parameter “a ” as follows: 

{ 

𝕌 

𝜆

} 

= 

{ 

𝕌 0 
𝜆0 

} 

+ 

𝑝 ∑
𝑖 =1 

𝑎 𝑖 
{ 

𝕌 𝑖 

𝜆𝑖 

} 

, (7) 

where ( 𝕌 0 , 𝜆0 ) is a known starting solution and p is the truncation order. 
By introducing Taylor series (7) in the Eq. (4) and equating like powers 
of “a ”, we obtain the following set of linear problems at each order: 

For order: 𝑖 = 1 

×

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

{ 𝛾1 } = ([ 𝐼 𝐼 ] + [ 𝐴 ( 𝜃0 )]){ 𝜃1 } 
{ 𝑆 1 } = [ 𝐶]{ 𝛾1 } 
{Π1 } = ([ 𝐼 𝐼 𝐼 ] + [ 𝐵( 𝜃0 )]){ 𝑆 1 } + [ ̂𝑆 0 ]{ 𝜃1 } 
[ 𝑑𝑖𝑣 ] 

((
[ 𝐹 ][ 𝐶][ 𝐻] + [ ̂𝑆 0 ] 

)
{ 𝜃1 } 

)
= 0 

[ 𝑁 ] 
((

[ 𝐹 ][ 𝐶][ 𝐻 ] + [ ̂𝑆 0 ] 
)
{ 𝜃1 } 

)
= 𝜆1 { 𝑇 𝑑 } 

{ 𝑈 1 } = 0 

(8) 
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