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a b s t r a c t 

An inverse reconstruction investigation is presented to determine the inner boundary location (corrosion points) 

for the heat transfer in composite walls from measurement data on exterior boundary. Finite Block Method (FBM) 

is utilized in this paper to deal with transient heat problems across the multilayered composite walls. Starting 

from one-dimensional problems, Lagrange interpolation with equally spaced nodes is applied to create first order 

differential matrices and thereafter the higher order differential matrices are obtained. Then combining with map- 

ping technique, physical domain is mapped into a normalized domain for two-dimensional or three-dimensional 

problems with 8 seeds or 20 seeds respectively. Both time-spatial approach and Laplace transform technique with 

Durbin’s inversion method are employed in the simulating procedure. In addition, roots of Chebyshev polynomial 

of first kind are considered in FBM for the first time, which can improve the degree of convergence significantly. 

Three numerical examples are presented to validate the accuracy of FBM. Comparisons between Finite Element 

Method (FEM), FBM and Point Collocation Method (PCM) are demonstrated respectively. Numerical observation 

indicates that FBM has much higher degree of accuracy even with few collocation points. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Detecting the corrosion boundary of multilayer materials occurs 

extensively in engineering applications such as metallurgy. In the proce- 

dure of iron-steel-making, corrosion will take place on the inner surface 

of steel-smelting furnace which is always made of multilayer materials 

with different physical properties. We need to monitor the corrosion 

timely to prevent accidents. The corrosion degree inside steel-smelting 

furnace can be simulated through outermost layer information such as 

temperature or heat flux which may be measured easily. This kind of 

problem is always ill-posed and belongs to inverse problems. 

The identification of corrosion boundary in heat transfer problems 

has been studied numerically by Aparicio and Atkinson [1] , Bryan and 

Caudill [2,3] and Fredman [4] . Lots of numerical algorithms such as Fi- 

nite Element Method (FEM), Finite Difference Method (FDM) as well as 

Boundary Element Method (BEM) are available for inverse problems in 

engineering, see Liu and Zhang [5] , Raynaud and Bransier [6] , Aliabadi 

and Wen [7] . Although FEM is considered as the most powerful and well 

developed tool in numerical engineering, advanced numerical methods 

have become more attractive recently such as meshless approaches. In 

the last decade, meshless methods based on interpolation techniques 
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like Radial Basis Functions (RBF) and Moving Least Square (MLS) 

provide an efficient tool in engineering analysis, see Powell [8] , Jack- 

son [9] , and Reinhard Farwig [10] . Method of Fundamental Solutions 

(MFS) developed as a useful technique in numerical computation by 

Mathon and Johnston [11] and then Golberg and Chen [12] extended 

its application further. Hon and Wei [13] utilized MFS to solve inverse 

heat transfer problems. Wei and Yamamoto [14] employed this method 

to identify moving boundary for heat conduction problems with Cauchy 

conditions. Li and Wei [15] proved the uniqueness of corresponding 

solutions. However, it is difficult to make further convergence study. 

Same problems with Stefan–Boltzmann conditions had been studied 

by Hu and Chen [16] and the existence of the corresponding solutions 

had been proved. Niu et al. [17,18] employed time-spatial method 

as well as Kansa method to solve inverse heat transfer problems in 

inhomogeneous media. In their study, time is treated as an extra 

coordinate and the method of discrete Tikhonov regularization is used 

due to ill-posed characteristics of inverse problems. 

Differential Quadrature Method (DQM) developed by Bellman 

[19] is a powerful numerical method for lots of boundary problems. It 

is applied extensively in engineering and sciences by Bert et al. [20,21] . 

Liew et al. [22–26] proposed a lot of investigations on DQM in plate 

vibration as well as bending. When they use same number of discrete 
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nodes, it can be found that DQM has better convergent results than FEM. 

Bert and Malik [27] gave a comprehensive review on DQM as well as its 

application. Recently Wen et al. [28] , Li et al. [29,30] proposed a new 

meshless method called Finite Block Method (FBM) which is based on 

point collocation concept. It has been applied to solve heat transfer and 

elastodynamic problems in both 2D and 3D in Functionally Graded Ma- 

terials (FGMs) with “star ” performance. The novelty of FBM is that both 

first order and high order partial differential matrices in physical domain 

are based on the first order differential matrices constructed by Lagrange 

polynomial in normalized domain. Meanwhile, partial differential ma- 

trices of higher order are not essential in the governing equations with 

non-constant coefficients such as thermo-elasticity problems in inhomo- 

geneous media. At the interface between two adjacent blocks in similar 

material, all stress components are found to be continuous [30] . 

The aim of this paper is to propose an inverse reconstruction pro- 

cedure to determine the inner boundary (corrosion points) location in 

the problem of heat conduction for composite walls from measurement 

data of both temperature and heat flux on exterior boundary. FBM 

is extended to reconstruct the shape of corrosion boundary line (or 

surface) for 2D (or 3D) problems. First, with Lagrange interpolation 

where collocation points are distributed uniformly along a straight line, 

the first order differential matrix can be constructed for 1D problem, 

after which differential matrices of higher order can be obtained 

directly. Partial differential matrices for 2D and 3D problems can be 

evaluated similarly. Object with irregular boundary configuration in 

physical domain should be divided into quadratic blocks. With several 

quadratic shape functions, each block is mapped into a normalized 

square. In this procedure, elements with 8 (or 20) seeds are employed 

for 2D (or 3D) problems. Thereafter, the continuity conditions of heat 

flux and temperature along interface between two blocks should be 

satisfied and the partial differential operators in each block should 

satisfy a strong form too. Two approaches are proposed to deal with 

time dependent behavior in this paper, i.e. time-space approach (TS) 

where we do not distinguish time and space variables, and Laplace 

transform approach (LT), where the dependence on time variable t is 

reduced to the dependence on the transform variable s . For the second 

approach, in physical domain, the Durbin’s inversion technique [31] for 

Laplace transformation is applied to get the nodal values. 

The paper is organized as follows. Fundamentals of FBM which 

can be used directly to solve time independent problems are given in 

Sections 2 and 3 . Time-space approach and Laplace transform approach 

are shown in Section 4 to deal with time dependent behavior. Three 

numerical examples are analyzed to demonstrate the procedure of 

FBM in identifying the moving boundary. Comparisons among FBM 

(TS), FBM (LT), FEM and RBF have been shown in Section 5 . Finally a 

conclusion is presented in Section 6 . 

2. Lagrange interpolations for FBM 

2.1. One dimension problems 

For 1D problem in normalized domain, collocation points are 

equally spaced along 𝜉 axis, as follows 

𝜉𝑖 = −1 + 

2( 𝑖 − 1) 
𝑀 − 1 

, 𝑖 = 1 , 2 ....𝑀, (1) 

where M denotes the number of discrete points on 𝜉-axis. By Lagrange 

polynomial interpolation, smooth function u ( 𝜉)( − 1 ≤ 𝜉 ≤ 1) can be 

approximated by 

𝑢 ( 𝜉) = 

𝑀 ∑
𝑗=1 

𝑀 ∏
𝑘 =1 ,𝑘 ≠𝑗 

𝜉 − 𝜉𝑘 

𝜉𝑗 − 𝜉𝑘 
𝑢 𝑗 , (2) 

Fig. 1. Uniformly distributed nodes in normalized domain. 

where u j = u ( 𝜉j ) is the nodal value. Through (2) , the first order derivative 

of u ( 𝜉) can be obtained 

𝑑𝑢 

𝑑𝜉
= 

𝑀 ∑
𝑗=1 

𝑢 𝑗 

𝑀 ∏
𝑘 =1 , 
𝑘 ≠𝑗 

(
𝜉𝑗 − 𝜉𝑘 

)−1 𝑀 ∑
𝑖 ≠𝑗 

𝑀 ∏
ℎ =1 ,ℎ ≠𝑗,ℎ ≠𝑖 

(
𝜉 − 𝜉ℎ 

)
. (3) 

For all nodes, the first order derivative can be expressed, in matrix 

form, as 

𝐔 𝜉 = 𝐃 0 𝐮 , (4) 

where u = [ u 1 , u 2 ,.... u M 

] T is vector of nodal values, 𝐔 𝜉 = [ 𝑢 ′1 , 𝑢 
′
2 , ..., 𝑢 

′
𝑀 

] 𝑇 
is vector of the first order derivative of u ( 𝜉) at each node. D 0 is the first 

order differential matrix. For m-th order derivative, we have 

𝐔 

( 𝑚 ) 
𝜉

= 𝐃 

𝑚 
0 𝐮 , 𝑚 > 0 , (5) 

where 𝐔 

( 𝑚 ) 
𝜉

= [ 𝑢 ( 𝑚 ) 1 , 𝑢 
( 𝑚 ) 
2 , ..., 𝑢 

( 𝑚 ) 
𝑀 

] 𝑇 is vector of m-th order derivative of 

nodal value. 

2.2. Multi-dimensions 

Similar to 1D problems in normalized domain, we have 

𝜂𝑗 = −1 + 

2( 𝑗−1) 
𝑁−1 , 𝑗 = 1 , 2 ....𝑁 ,where N indicates the number of dis- 

crete points along 𝜂-axis. With Lagrange interpolation, smooth function 

u ( 𝜉, 𝜂) can be approximated as 

𝑢 ( 𝜉, 𝜂) = 

𝑀 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

𝐹 ( 𝜉, 𝜉𝑖 ) 𝐺( 𝜂, 𝜂𝑗 ) 𝑢 𝑘 = 

𝑄 ∑
𝑘 =1 

𝜓 𝑘 ( 𝜉, 𝜂) 𝑢 𝑘 , (6) 

where 

𝐹 ( 𝜉, 𝜉𝑖 ) = 

𝑀 ∏
𝑚 =1 
𝑚 ≠𝑖 

( 𝜉 − 𝜉𝑚 ) 
( 𝜉𝑖 − 𝜉𝑚 ) 

, 𝐺( 𝜂, 𝜂𝑗 ) = 

𝑁 ∏
𝑛 =1 
𝑛 ≠𝑗 

( 𝜂 − 𝜂𝑛 ) 
( 𝜂𝑗 − 𝜂𝑛 ) 

, (7) 

For 2D problems, collocation nodes in normalized domain are 

shown in Fig. 1 . u k = u ( 𝜉k , 𝜂k ) indicates the nodal value at points P k 
which stands for P ( 𝜉k , 𝜂k ), where k = ( j − 1) ×M + i , i = 1, 2, ..., M and 
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