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We propose a new method of manifold mapping optimization method for the lump-loaded antennas to obtain a 

miniaturization. The surrogate model can be constructed using explicit formulas during optimization iterations. 

The coarse and fine models of manifold mapping method are evaluated with an adaptive precision method of 

moments (MoM) simulator. The computation precision is determined by compression thresholds in the adaptive 

cross approximation (ACA) for the MoM far coupling evaluations. Numerical optimization of the lump-loaded 

log-periodic dipole antenna is tested to validate the efficiency of the proposed method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

For shortwave communication antenna, the size is about half wave- 
length of the corresponding operated frequency, thus large size antenna 
is required. Lump loading is an effective way to obtain a miniaturization. 
As a result, design and optimization of the lump-loaded antennas be- 
comes a promising and challenging research topic [1] . In [2] , the lump 
loaded folded monopole with 2–40 MHz bandwidth is optimized using 
genetic algorithm (GA). In [3] , the GA optimization tool for the design of 
broadband and multi-band loaded antennas is proposed. A modified par- 
ticle swarm optimization (PSO) algorithm with the commercial method 
of moments (MoM) solver is proposed to optimize lump-loaded wire an- 
tennas with a wide frequency in [4] . In these optimization processes, 
the full-wave electromagnetic simulations repeatedly are required for 
each optimization parameter, which leads to large computation time 
and memory cost. 

The space mapping optimization method was introduced by Ban- 
dler et al. as a surrogate-based optimization technique in [5] . It intro- 
duces a reasonable trade-off between optimization precision and time 
consumption, where the process can be implemented with coarse model 
optimization and fine model validation. The space mapping has been 
extended to optimize the antenna and substrate integrated waveguide 
(SIW) filter problems successfully [6–10] . However, the coarse model 
optimizations are required during fine model iterations [11] in the 
standard space mapping. As a result, the manifold mapping (MM) is 
proposed in [12,13] , where the surrogate model is constructed using 
available fine and coarse model data. The response of surrogate model 
is a sufficiently good approximation of the fine model response. As a 
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result, a better convergence can be obtained than standard space map- 
ping method [14] . 

For general simple antenna structure, the analytical formula or 
equivalent circuit model can be used as coarse model. But for antennas 
with complex structure, the coarse model cannot be obtained easily. As 
a result, the electromagnetic simulation methods are explored as coarse 
model. In [6] , a coarse-mesh electromagnetic model with Kriging in- 
terpolation is employed to construct the coarse model for the antenna 
optimization. However, a lot of repeatedly electromagnetic simulations 
should be implemented to obtain an interpolation basis for Kriging inter- 
polation. In [7] , the thin-wire model has been proposed as coarse model 
for optimization of handset antennas. However, the thin-wire models are 
only used for a small number of handset antennas and are not universal. 
In [15] , we propose a space mapping optimization for the 2D antenna 
array elements arrangements, the analytic formulations are employed 
for each antenna element radiation field expression [15] , while it is not 
suitable for the lump-loaded log-periodic dipole antenna proposed in 
this work. 

In this work, a robust coarse model simulated with low precision 
MoM is proposed in the manifold mapping method, the near field cou- 
plings are evaluated with full MoM directly, while the far couplings 
are evaluated with adaptive cross approximation (ACA) [18] . The full 
wave simulation precision can be determined by the threshold of the 
ACA, as a result, the low and high precisions are chosen automati- 
cally in the optimization framework for coarse and fine model simu- 
lations, respectively. Numerical optimization for a reduced size lump- 
loaded log-periodic dipole antenna is proposed to validate the proposed 
method. 
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Fig. 1. The flowchart of manifold mapping. 

2. Manifold mapping optimization framework 

In this paper, the manifold method is employed as the main optimiza- 
tion tool, and the procedure of it is shown in Fig. 1 . In the flowchart, 
there are mainly three parts: GA coarse model optimization, ACA-MoM 

coarse/fine model evaluation, and manifold method optimization. 

2.1. Manifold mapping 

The design specification is denoted by 𝑦 ∈ ℝ 

𝑚 , the fine model re- 
sponse R f ( x ) is defined over the set 𝑋 ∈ ℝ 

𝑛 (e.g. voltage standing wave 
ratio (VSWR) or gain evaluated for the antenna), and x ∈ X is the design 
variable (e.g. the size of the antenna). In this work, we want to solve 
the following optimization problem 

𝑥 ∗ 
𝑓 
= arg min 

𝑥 ∈𝑋 
‖‖‖𝑅 𝑓 ( 𝑥 ) − 𝑦 

‖‖‖ (1) 

𝑥 ∗ 
𝑓 

is the optimal solution of the fine model. 
The coarse model response R c ( x ) is also defined over the set X . The 

coarse model optimum is defined as: 

𝑥 ∗ 
𝑐 
= arg min 

𝑥 ∈𝑋 
‖‖𝑅 𝑐 ( 𝑥 ) − 𝑦 ‖‖ (2) 

𝑥 ∗ 
𝑐 

is the optimal solution of coarse model. 
In order to accelerate the optimization process, it is to find the corre- 

sponding surrogate model 𝑅 

𝑠 
[12,13] instead of solving the fine model 

in formula ( 1 ) directly. The fine model evaluation is assumed to be com- 
putationally expensive, typically obtained by a time-consuming electro- 
magnetic simulation. The proposed surrogate model is more efficient 
than the fine model, and also with a reasonable accuracy [13] . At this 
time, the solution of surrogate model 𝑥 ( 𝑖 ) is as 

𝑥 ( 𝑖 +1) = arg min 
𝑥 ∈𝑋 

‖‖‖𝑅 

( 𝑖 ) 
𝑠 
( 𝑥 ) − 𝑦 

‖‖‖ (3) 

where 𝑥 ( 𝑖 ) means a series of approximate solution of formula ( 1 ), 

𝑅 

( 𝑖 ) 
𝑠 ( 𝑥 ) ∈ ℝ 

𝑚 is a surrogate model response at iteration i . A surrogate 

model is defined in the manifold mapping as 

𝑅 

( 𝑖 ) 
𝑠 
( 𝑥 ) = 𝑅 𝑓 

(
𝑥 ( 𝑖 ) 

)
+ 𝑆 

( 𝑖 ) (𝑅 𝑐 ( 𝑥 ) − 𝑅 𝑐 

(
𝑥 ( 𝑖 ) 

))
(4) 

S ( i ) is a linear correction matrix, which would be defined in ( 5 ). Follow- 
ing are the main processes of the manifold mapping algorithm. 

Initialization: 

(1) Initialize the parameter of GA: crossover probability of 0.8, muta- 
tion probability of 0.05, population size of 50, and the maximum 

iteration number of 200. 
(2) Initialize the first iteration step i = 1 and let S ( i ) = I m ×m . 

Obtain the coarse model 𝑥 ∗ 
𝑐 

with a low precision adaptive MoM 

together with GA, and let 𝑥 (1) 
𝑓 

= 𝑥 ∗ 
𝑐 
. 

i th iteration: 

(1) Set 𝑥 ( 𝑖 ) 
𝑓 

for fine model simulation using MoM solver with high 
precision MoM, if the fine model response can achieve the design 
goal, the optimization is end; if not, go on; 

(2) Construction of the surrogate model 𝑅 

( 𝑖 ) 
𝑠 ( 𝑥 ) shown as formula ( 4 ); 

S ( i ) is the m ×m correction matrix as following: 

𝑆 

( 𝑖 ) = Δ𝐹 · Δ𝐶 

† (5) 

where, 

Δ𝐹 = 

[
𝑅 𝑓 

(
𝑥 ( 𝑖 ) 

)
− 𝑅 𝑓 

(
𝑥 ( 𝑖 −1 ) 

)
, ⋯ , 𝑅 𝑓 

(
𝑥 ( 𝑖 ) 

)
− 𝑅 𝑓 

(
𝑥 max ( 𝑖 − 𝑛, 0 ) )]

Δ𝐶 = 

[
𝑅 𝑐 

(
𝑥 ( 𝑖 ) 

)
− 𝑅 𝑐 

(
𝑥 ( 𝑖 −1 ) 

)
, ⋯ , 𝑅 𝑐 

(
𝑥 ( 𝑖 ) 

)
− 𝑅 𝑐 

(
𝑥 max ( 𝑖 − 𝑛, 0 ) )]

ΔF and ΔC is constructed using the previous results of R f and R c 

accumulated during the previous optimization, ( • ) † denotes the 
pseudo-inverse operator, n is the number of step for iteration, m 

is the number of optimized frequencies. 
(3) Optimization of the surrogate model 𝑅 

( 𝑖 ) 
𝑠 ( 𝒙 ) , get the ( i + 1) itera- 

tion fine model parameter values 𝐱 ( 𝑖 +1) 
𝑓 

, checking whether a ter- 

mination condition is satisfied ||𝑅 𝑓 ( 𝒙 
( 𝑖 +1) 
𝑓 

) − 𝑅 𝑓 ( 𝒙 
( 𝑖 ) 
𝑓 
) || ≤ 𝜂. If sat- 

isfied, the optimization will be end; if not, set i = i + 1. We choose 
𝜂 = 10 − 3 in this work. 
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