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a b s t r a c t 

Wave propagation phenomena occur in reality often in semi-infinite two-phase (porous) regions. It is well known 

that such problems can be handled well with the poroelastodynamic Boundary Element Method (BEM). But, it is 

also well known that the BEM with its dense matrices becomes prohibitive with respect to storage and computing 

time. This is especially true for poroelastodynamics, where in the best case four degrees of freedom per node are 

required. As well, the fundamental solution of poroelastodynamics is computationally expensive. 

Here, a fast multipole BEM is proposed to circumvent those points. The Chebyshev interpolation-based FMM 

significantly reduces the memory consumption of the system matrix and thus allows for larger problem sizes 

to be treated. As well, it requires fewer evaluations of the fundamental solution. To employ an iterative solver, 

the use of a transformation of the material data is mandatory. Numerical tests show the expected almost linear 

complexity of the proposed method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Porous media occur frequently in nature as well as construction ma- 

terials. Probably, the best-known example for a natural porous medium 

is soil. The understanding of wave propagation in such media is of dis- 

tinct interest for oil and gas explorization but also for earthquake analy- 

sis. In these particular fields the treatment of unbounded domains, such 

as a halfspace, is required. The Boundary Element Method (BEM) is ad- 

vantageous over the Finite Element Method (FEM) for the numerical 

treatment of such geometries, since it requires only the discretization of 

the boundary and inherently fulfills the radiation condition. A review 

of poroelastic models and their numerical treatment is given in [40] . 

Based on the work of von Terzaghi, a theoretical description of 

porous materials saturated by a viscous fluid was presented by Biot 

[5] . In the following years, Biot extended his theory to anisotropic cases 

[6] and also to poroviscoelasticity [9] . To treat wave propagation a dy- 

namic theory is necessary, which can be found in two papers, one for 

low frequency range [7] and the other for high frequency range [8] . 

Alternatively, the theory of porous media (TPM) can be used, which 

goes back to Fillunger and has been brought to a mature state by de 

Boer [15] and Ehlers [18,19] . The dynamic extension of the TPM can 

be found in [16] . Assuming a linear geometrical and a linear constitu- 

tive model, a comparison of both theories has been published by Schanz 

and Diebels [41] , which shows that the mathematical operator of both 

theories is the same. This has the physical consequence that in both the- 

ories three waves exist, two compressional waves and one shear wave. 
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The numerical consequence is that all methods can be transferred from 

one theory to the other as long as the linear description holds. 

As already written above, here the focus is on a boundary ele- 

ment formulation. First poroelastodynamic BE formulations based on 

Biot ’s theory have been published in Laplace domain by Manolis and 

Beskos [30,31] expressed in terms of solid and fluid displacements. 

However, it can be shown that only the solid displacements and one 

additional variable, the fluid pressure, are independent [10] . Formula- 

tions in frequency domain have been published by Cheng et al. [14] and 

Domínguez [17] based on these unknowns. A time domain formulation 

was developed by Wiebe and Antes [48] , but with the restriction of van- 

ishing damping between the solid skeleton and the fluid. Another time 

dependent formulation was proposed by Chen and Dargush based on an- 

alytical inverse transformation of the Laplace domain fundamental solu- 

tions [13] . Utilizing the convolution quadrature method [28,29] a time 

stepping based BE formulation has been proposed by Schanz [38,39] . 

The latter formulation uses the Laplace domain fundamental solutions 

but works in time domain. Hence, all regularization techniques known 

for the elliptic operator can be applied, which has been done in [32] . All 

the above mentioned formulations are based on the first integral equa- 

tion and the collocation method. A symmetric Galerkin based formula- 

tion has been presented by Messner and Schanz [33] and a mathematical 

analysis of the Laplace domain version can be found in [43] . 

The above mentioned BE-formulations have a quadratic complexity 

in the spatial variable. Hence, for real world problems the effort be- 

comes prohibitive. To overcome this drawback so-called fast methods 
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have become popular in the field of applied mathematics and engineer- 

ing. The history of such methods, i.e., asymptotically optimal approxi- 

mations of dense matrices, starts with the paper by Rokhlin [37] . For 

the first time an algorithm was presented which scales like  ( 𝑛 log 𝑛 ) . 
Subsequently, the so called Fast Multipole Method (FMM) has been de- 

veloped in [22] for some large-scale n-body problems. The method was 

significantly improved in [23] . In the work of Of et al. [36] the FMM is 

applied to elastostatic problems based on a Galerkin BEM discretization. 

The extension to elastodynamics in Fourier domain has been published 

in [12] based on a collocation approach. In time domain, the FMM with 

a plane wave expansion is presented in [44] . A textbook on the FMM 

with application in collocation BEM has been published by Liu [27] and 

a literature review can be found in [35] . 

Another approach is the wavelet based BEM [1] , which produces 

sparse matrices based on orthogonal systems of wavelet like functions. 

On a purely algebraic level works the Adaptive Cross Approximation 

(ACA), which has been proposed by Bebendorf [2] , Bebendorf and 

Rjasanow [4] . The latter fast method is often classified as black-box 

method, because the ACA is (nearly) independent of the kernel func- 

tion. An application to the Galerkin BEM in elastostatics can be found 

in [3] . Other black-box methods for a FMM uses a series expansion of the 

kernel and can in this sense also be classified as black-box. The Panel 

Clustering (see [24] ) is the first of these methods. A refined version, 

where the kernel expansion is based on a Chebyshev interpolation, has 

been published by Fong and Darve [21] . The extension of this approach 

to acoustics with a directional clustering is presented in [34] . The ad- 

vantage of these black-box methods against the usual FMM is that no 

analytical kernel expansion has to be known. However, the price to pay 

is usually a higher complexity which is still almost linear but the expan- 

sion order of the kernel enters with a power of six in 3-d instead of four 

using, e.g., spherical harmonics for the Helmholtz kernel. But for poroe- 

lastodynamics this black-box property is essential as no analytic kernel 

expansion seems to be possible. There might be a possibility to reduce 

the kernel to a combination of derivatives of the Helmholtz kernel as 

it has been done in [12] for elastodynamics. However, this requires to 

shift some derivatives to the interpolation polynomials, which increases 

the necessary polynomial order, and a lot of analytical preparations of 

the kernel. A study on these different approaches can be found for elas- 

todynamics in the thesis [45] . 

Here, a FMM based on a Chebyshev interpolation will be presented 

for poroelastodynamics in Laplace domain. For an uncoupled quasistatic 

poroelastic problem the same FMM idea has been applied in [47] . 

The presented Laplace domain formulation includes also problems in 

Fourier/frequency domain if the real part of the Laplace variable is set 

to zero. The idea is to use the whole vectorial kernel within the Cheby- 

shev interpolation of the kernel. This results in vectorial M2L-operators 

but avoids to high interpolation orders. Further, the method is nearly 

black-box and can use already coded functions for the evaluation of the 

kernel. 

The paper is organized as follows. First, the basic equations and 

the corresponding integral equations are recalled. The FMM is given 

in Section 3 in a short way because it is only an extension from the 

algorithm given by Fong and Darve [21] . The modifications necessary 

for the vectorial kernel of poroelastodynamics will be discussed. The 

proposed formulation is then tested in Section 4 . 

Throughout this paper, vectors and tensors are denoted by bold sym- 

bols and matrices and vectors of the discretized system by upper case 

and lower case sans serif symbols, respectively. No summation conven- 

tion is used in the entire work. The indices of a matrix ( 𝖠 ) 𝑖𝑗 indicate the 

ij th entry, which might be a scalar or a matrix value. 

2. Governing equations 

Following Biot ’s approach to model the behavior of a porous media, 

an elastic skeleton with a statistical distribution of interconnected pores 

is considered [6] . This porosity is denoted by 𝜙, which is the relation 

of the volume of the interconnected pores to the bulk volume. Contrary 

to these pores the sealed pores will be considered as part of the solid. 

Full saturation is assumed, i.e., a two-phase material is given. Assuming 

compressible constituents, a linear elastic solid skeleton, and a linear 

geometrical description results in a set of coupled partial differential 

equations (for details see [7] ). The problem can be given as follows. 

2.1. Problem setting 

Let Ω ⊂ ℝ 

3 be a bounded Lipschitz domain and Γ≔ 𝜕Ω its boundary 

with the outward normal n . The coupled set of homogeneous partial dif- 

ferential equation for the solid displacements u ( x ) and the pore pressure 

p ( x ) are considered 
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with the parameter 

𝛽 = 

𝜅𝜚 𝑓 𝜙
2 𝑠 

𝜙2 + 𝑠𝜅
(
𝜚 𝑎 + 𝜙𝜌𝑓 

) and 𝜚 𝑎 = 0 . 66 𝜙𝜌𝑓 . 

It is assumed that the pore pressure and the solid displacements are in 

Laplace domain with the Laplace variable 𝑠 ∈ ℂ s.t. ℜ s > 0. The used 

material data are the shear and bulk modulus of the skeleton, G and 

K . The bulk density 𝜚 = ( 1 − 𝜙) 𝜚 𝑠 + 𝜙𝜚 𝑓 is the weighted combination of 

the solid density ϱs and the fluid density ϱf . The Biot parameters are de- 

noted by R and 𝛼, where the latter describes the compressibility of the 

solid grains (i.e., 𝛼 = 1 is the incompressible limit). The spatial deriva- 

tives are given with the ∇ -operator with its usual meanings as grad = ∇ 

or div = ∇ ⋅. The assumption for the apparent mass density ϱa holds for 

low frequencies [11] . For different materials the factor 0.66 might be 

different and a certain frequency dependency can be added [8] . Further, 

for higher frequencies as well the permeability should be modeled as a 

function of s [25] , which does not change the subsequent derivation. 

However, the proposed FMM will be restricted to low frequencies and, 

consequently, here the dependency is skipped. The boundary is split 

into non-overlapping sets ΓD and ΓN such that Γ = Γ𝐷 ∪ Γ𝑁 

holds. The 

Dirichlet and Neumann boundary conditions are given by 

𝐮 ( 𝐱 ) = 𝐟 𝐷 ( 𝐱 ) ∀𝐱 ∈ Γ𝐷 

𝑝 ( 𝐱 ) = 𝑔 𝐷 ( 𝐱 ) ∀𝐱 ∈ Γ𝐷 

𝐭 ( 𝐱 ) =  𝑆 𝐮 ( 𝐱 ) − 𝛼𝐧 𝑝 ( 𝐱 ) = 𝐟 𝑁 
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)

= 𝑔 𝑁 

( 𝐱 ) ∀𝐱 ∈ Γ𝑁 
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(2) 

where t ( x ) is the total traction vector and q ( x ) the flux. In (2) , the elastic 

traction operator 

 𝑆 ∙ = 

(
𝐾 − 

2 
3 
𝐺 

)
𝐧 ∇ ⋅ ∙ + 2 𝐺 

𝜕 

𝜕𝐧 
∙ + 𝐺𝐧 × ( ∇ × ∙) (3) 

has been used. The given set of partial differential equations is the so- 

called 𝑢 − 𝑝 -formulation, which needs only four (in 3D) degrees of free- 

dom (dofs). There exits also formulations for poroelastic continua with 

more dofs, which are formulated with the solid and fluid displacements 

or even with the latter both and the pore pressure. However, for linear 

problems the proposed one is sufficient and has the minimum amount 

of dofs [10] . Certainly, the boundary condition type, Dirichlet or Neu- 

mann, might differ in each direction of the vectorial dofs and between 

the elastic and fluid dofs. However, for simplifying notation this is not 

separately denoted. Also it should be remarked that all variables are 

in Laplace domain as noted above. A frequency domain formulation is 

automatically included by setting the real part of s to zero. 

As already reported in [13] for a reliable numerical method dimen- 

sionless variable should be introduced. Based on the suggestion in [13] a 
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