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a b s t r a c t 

The mild slope equation (MSE) has been widely used to describe combined wave refraction and diffraction in 

the field of coastal and offshore engineering owing to its applicability for a wide range of wave frequencies. In 

this paper, a meshless numerical algorithm, based on the generalized finite difference method (GFDM), is firstly 

proposed to efficiently and accurately solve the MSE. As a newly-developed domain-type meshless method, the 

GFDM can truly get rid of time-consuming meshing generation and numerical quadrature. The partial differential 

terms of the MSE for each point in the computational domain can be discretized into linear combinations of 

nearby function values with the moving-least-squares method of the GFDM, so the numerical implementation is 

very convenient and efficient. To evaluate the accuracy and capability of the proposed scheme for MSE, a series 

of numerical tests were conducted, covering a range of complexity that included propagation and transformation 

of waves due to a parabolic shoal, a circular island mounted on a paraboloidal shoal and elliptic shoal situated 

on a slope, as well as breakwater gap. The results were compared with experimental data, analytical solutions 

and other numerical methods, and reasonable agreements have been achieved. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Wave propagation in various water depth usually accompany with 

refraction, diffraction and other wave transformations. These charac- 

teristics of wave motion will have significant influence on applications 

of coastal engineering, hence it is imperative to estimate the offshore 

wave conditions for coastal structure designing, sediment transport and 

economical operation. In 1972, assuming irrotational linear harmonic 

waves and ignoring energy loss due to friction or breaking, Berkhoff

[1] derived the original mild slope equation (MSE) by integrating 

the Laplace equation over the water depth after multiplying a water 

depth function. Thereafter, the MSE has been widely used in the 

field of coastal engineering for its reliability in dealing with complex 

wave problem and its accuracy of describing combined refraction and 

diffraction phenomenon. 

The original MSE is a single frequency wave equation based on 

linear wave theory, so many additional physical effects, which play 

essential roles in the wave transformations prediction, are not taken 

into account. To describe more realistic complex wave transformations, 

the original MSE has been improved by many researchers with different 

ways, such as taking into account the terms of fractional dissipation 

[2–4] and of steep slope [4–6] , considering wave breaking [7,8] and 
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wave-current interaction [9,10] , as well as extending the original MSE 

to include time element forming a time-dependent equation [11–13] . 

Since the equation is essentially the elliptic type with inseparable 

characteristics, presenting a direct solution to the original MSE is prob- 

lematic. Therefore, various numerical methods have been proposed to 

solve the MSE. The iterative method, based on the conjugate-gradient 

(CG) technique, was developed by Panchang et al. [14] , who used a 

preconditioning method to accelerate the speed of convergence in the 

solution process of solving the MSE. Moreover, a generalized conjugate 

method without using the preconditioning method was proposed by 

Li [15] to solve the MSE and achieved a result as good as Panchang’s 

model. Tang et al. [16] combined the finite difference method (FDM) 

and the generalized product-type bi-conjugate gradient (GPBiCG) 

method to simulate wave propagating in the near shore region. Chen et 

al. [17] used a finite element coastal wave method to simulate the wave- 

current interaction phenomenon by solving an extended mild slop wave 

current equation. Besides, a numerical model is developed by Liu et 

al. [18] based on the preconditioned self-adaptive finite element model 

(FEM) to solve the MSE. In addition, Naserizadeh et al. [19] used the 

boundary element method (BEM) and a high-order FDM conjunctively 

to solve the modified MSE. However, each of these methods has advan- 

tages and disadvantages for the applicability, accuracy and stability, as 

well as computational cost when dealing with different equation. 
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Over the past few decades, the conventional mesh-based methods 

have been developed quite perfectly. Nevertheless, in some cases such 

as the complex-geometry and higher dimensional problems, mesh gen- 

eration and numerical integration need considerable amount of time 

and thus decrease computational efficiency greatly. Being regarded as 

a promising alternative to classical mesh-based methods, the meshless 

methods have the potential to avoid the problem of domain or surface 

grid generation and numerical quadrature. Since it was put forward, 

the meshless numerical schemes have been gradually derived a series of 

methods such as the method of fundamental solutions (MFS) [20,21] , 

the smoothed-particle hydrodynamics (SPH) [22] , the element-free 

Galerkin method (EFGM) [23] , the modified collocation Trefftz method 

(MCTM) [24,25] , the meshless local Petrov–Galerkin method (MLPGM) 

[26] , the local radial basis function collocation method (LRBFCM) 

[27] and the generalized finite difference method (GFDM) [28–38] . 

Within the above meshless methods, the GFDM belongs to a 

domain-type one, since both of boundary nodes and interior nodes are 

simultaneously adopted in numerical implementation. In the GFDM, by 

utilizing the weighted least squares fitting technique and Taylor series 

expansion, the derivatives of the unknown variables for each point in 

the computational domain can be discretized into linear combinations 

of nearby function values with different weighting coefficients, then a 

sparse system of nonlinear algebraic equations is yielded and can be 

efficiently solved by using various sparse matrix solvers. This feature 

makes the GFDM easy-to-program, straightforward and efficient when 

applied to a large and complicated computational region. Benito et al. 

[28] derived the explicit formulas of the GFDM and some influencing 

factors on numerical accuracy were discussed with several sets of math- 

ematical cases. Thereafter, Gavette et al. [31] improved the GFDM and 

obtained satisfying results by comparing with other meshless methods. 

For over a decade, the GFDM has been gradually applied on various 

mathematical problems. Benito et al. [29,30] applied the GFDM to solve 

parabolic and hyperbolic equations and improved the approximated 

solution of partial difference equations. More challenging, the GFDM 

is used to solve third-and fourth-order partial differential equations 

by Urena et al. [32] . Recent advances, which enable approximation of 

nonlinear conditions, have the potential to extend the GFDM for various 

scientific and engineering applications. Chan et al. [33] utilized the 

GFDM and a newly-developed solver for nonlinear algebraic equation 

to deal with two-dimensional nonlinear obstacle problems, while Fan 

et al. [34,35] applied the GFDM on inverse biharmonic boundary- 

value problems and two-dimensional Cauchy problems. Zhang et al. 

[36,37] adopted the GFDM to simulate the two dimensional sloshing 

phenomenon and the propagation of nonlinear water waves in numer- 

ical wave flume. Li and Fan [38] utilized the GFDM to analyze the 

two-dimensional shallow water equation. 

In this paper, we investigated a meshless numerical scheme, 

based on the GFDM, for solving the wave transformation processes in 

nearshore region, including diffraction, refraction, reflection, and weak 

nonlinearity, which is governed by the MSE. The proposed GFDM-based 

model is truly free from mesh generation and numerical quadrature, 

so it is very effective, simple and accurate to deal with problems in 

irregular domains, governed by the MSE. It should be noted that, as 

described above, the GFDM has been recently applied to various partial 

differential equations (PDEs). To the best of our knowledge, this is the 

first time that the GFDM is applied for accurately solving the MSE. 

In addition, this paper focuses on numerical solution of nonlinear 

equations, although many published GFDM-related papers mainly 

investigated numerical solutions of linear PDEs. Besides, the flexibility 

of the GFDM is also emerged since the spatial derivatives at any position 

can be easily acquired by the GFDM. It is worthwhile to mention that, 

for much shorter period of incident wave, the computational cost for 

most numerical method will substantially increase due to sufficient 

accuracy. This situation is a challenging test for any numerical model. 

A surprising result is obtained in the present paper. Furthermore, 

the accuracy of the MSE models is carefully verified in the way for 

Fig. 1. Schematic diagram of computational domain and boundary conditions in this 

study. 

linear and nonlinear dispersion relations. Four numerical examples, 

including refraction of long waves over a parabolic shoal, wave around 

a circular island on a paraboloidal shoal and wave propagation over an 

elliptic shoal, as well as single gate breakwater, are provided to assess 

the merits of using the GFDM for numerical solutions of the MSE. In 

addition, some correlation parameters are investigated to verify the 

stability and convergence of the proposed meshless numerical scheme. 

2. Governing equation and boundary conditions 

2.1. Governing equations 

When a homogeneous incompressible fluid with irrotational motion 

travels over a sea bottom with variable depth h ( x, y ), diffraction and 

reflection usually occur due to shoals or solid boundaries. Thus, the 

fluid can be expressed in terms of the velocity potential Φ( x, y, z, t ), 

which satisfies the Laplace equation as follow [1] , 

∇ 

2 Φ + 

𝜕 2 Φ
𝜕 𝑧 2 

= 0 − ℎ ( 𝑥, 𝑦 ) ≤ 𝑧 ≤ 0 (1) 

The linear free surface boundary conditions for harmonic waves is, 

𝜕Φ
𝜕𝑧 

+ 

𝜔 2 

𝑔 
Φ = 0 𝑧 = 0 (2) 

The kinematic boundary condition at the impermeable bottom is, 

𝜕Φ
𝜕𝑧 

+ ∇ ℎ ⋅ ∇Φ = 0 𝑧 = − ℎ ( 𝑥, 𝑦 ) (3) 

Where x, y denote the horizontal coordinates while z is the vertical 

coordinate measured positively upwards with the undisturbed free 

surface at z = 0. ∇ = ( 𝜕 
𝜕𝑥 
, 
𝜕 

𝜕𝑦 
) is used to indicate the horizontal gradient 

operator and g denotes the gravitational acceleration. 

For monochromatic waves, the velocity potential Φ( x, y, z, t ) can be 

presented as [39] , 

Φ( 𝑥, 𝑦, 𝑧, 𝑡 ) = Re 
{
𝜑 ( 𝑥, 𝑦 ) 𝑓 ( 𝑧 ) 𝑒 − 𝑖𝜔𝑡 

}
(4) 

in which symbol Re represents the real part of a complex value and 𝜑 

is the two-dimensional complex horizontal wave velocity potential of 

the water surface. f ( z ) is the depth dependency, provided by 

𝑓 ( 𝑧 ) = 

cosh [ 𝑘 ( ℎ + 𝑧 ) ] 
cosh ( 𝑘ℎ ) 

(5) 

where k = k ( x, y ) denotes the local wave number. 

Referring to Fig. 1 , a Cartesian coordinate system is adopted, in 

which the horizontal coordinate ( x, y ) is located at the still water 

2 



Download	English	Version:

https://daneshyari.com/en/article/6925018

Download	Persian	Version:

https://daneshyari.com/article/6925018

Daneshyari.com

https://daneshyari.com/en/article/6925018
https://daneshyari.com/article/6925018
https://daneshyari.com/

