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a b s t r a c t 

Benefiting from the use of two cover systems, that is, the mathematical cover and the physical cover, the numerical 

manifold method (NMM) is capable of solving both continuous and discontinuous problems in the same platform. 

Presently, the NMM is further developed to tackle two-dimensional transient heat conduction problems in the 

functionally graded materials (FGMs). Firstly, the governing equation, the associated boundary conditions and the 

initial condition are presented. Then, the fundamentals of the NMM are briefly reviewed. Following, the NMM 

discrete formulations are derived based on the Galerkin-form weighted residual method and then solved with 

the backward difference scheme. Finally, for verification, three numerical examples with increasing complexity 

are tested on uniform mathematical covers composed of square mathematical elements, and our results well 

demonstrate the advantages of the proposed method in discretization and accuracy; besides, the effects of material 

gradient on the thermal behavior of FGMs are also examined. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Due to the increasing demands in material performance, e.g., mul- 

tifunction and better serviceability under complex working conditions, 

composite materials and structures are widely used in various areas such 

as aerospace, energy and automobile. Traditional composites like the 

laminated structures are not so satisfying due to the mismatch of phys- 

ical properties across the material interfaces. The functionally graded 

materials (FGMs) are a new generation of composites where the volume 

fraction of the constituents changes gradually, producing a nonhomoge- 

neous microstructure with continuously graded macro-properties such 

as the density, elastic modulus and thermal conductivity [1] . In view 

that the FGMs are generally designed to withstand elevated tempera- 

tures or large temperature gradients, the investigation of their thermal 

behaviors, especially those under transient state, is of great scientific 

and practical importance. 

Seeing that the thermal parameters such as the heat conductivity and 

the specific heat may vary spatially, the analytical solutions to unsteady 

heat transfer problems in the FGMs are very limited. As alternatives, nu- 

merical approaches like the finite element method (FEM), the boundary 

element method (BEM), and the meshless methods, have been frequently 

adopted. Chen et al. [2] studied the unsteady heat conduction problems 

in the FGMs using the graded FEM and adaptive precise time integration 

scheme. Charoensuk and Vessakosol [3] applied the high order control 

∗ Corresponding author. 

E-mail address: fanlifeng@bjut.edu.cn (L.F. Fan). 

volume FEM to investigate the transient heat transfer in the FGMs. Cao 

et al. [4] developed a hybrid graded FEM to compute the unstable tem- 

perature fields in the FGMs. Burlayenko et al. [5] obtained the transient 

temperatures and thermal stresses in the FGMs with the graded FEM. 

Sutradhar and Paulino [6] presented a simple BEM with boundary-only 

formulation for 3D unsteady heat conduction in the FGMs. Yang and 

Gao [7] computed the transient temperatures in the FGMs using a radial 

integration based BEM. Abreu et al. [8] proposed a convolution quadra- 

ture method based BEM to calculate the time-dependent temperatures in 

both homogenous materials and FGMs. Yu et al. [9] formulated a radial 

integral BEM together with the differential transformation technique to 

analyze transient heat conduction phenomenon in the FGMs. Sladek et 

al. [10] considered the unstable temperature fields in the FGMs with 

the meshless local boundary integral equation method. Using a higher- 

order plate theory and a meshless local Petrov–Galerkin method, Qian 

and Batra [11] investigated the 3D heat conduction problems in func- 

tionally graded thick plate. Through an improved meshless radial point 

interpolation method, Khosravifard et al. [12] examined the nonlinear 

unsteady heat transfer problems involving heat sources. Krahules et al. 

[13] adopted the meshless local radial basis function method to conduct 

stationary and transient heat conduction analysis in 2D and 3D FGMs. 

Recent years, the numerical manifold method (NMM) [14] has been 

attracting more and more attention attributing to its excellent ability in 

solving continuous problems, discontinuous problems and also the tran- 
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Fig. 1. Transient heat conduction in an isotropic FGM body. 

sition from continuities to discontinuities. The superiority of the NMM 

originates from its bi-cover systems, i.e., the mathematical cover (MC) 

and the physical cover (PC). Accordingly, the major features of the NMM 

can be summarized as: (1) the MC may be inconsistent with all the phys- 

ical boundaries, which may greatly facilitate the discretization proce- 

dure, especially for problems with complex geometrical configurations; 

(2) local physical characteristics can be properly captured in essence or 

manifested through the incorporation of certain special terms into the 

associated local functions; (3) higher-order approximations can be ob- 

tained by using higher-order local functions with the MC unchanged. 

In the past two decades, extensive efforts have been made to the appli- 

cation and development of the NMM in various fields, e.g., in fracture 

analysis [15–29] , fluid flow [30–34] , wave propagation [35–37] , stabil- 

ity of rock mass [38–42] and phase change [43] . Besides, the NMM has 

also been extended to perform thermal analysis in homogeneous ma- 

terials. Zhang and his coauthors tackled the steady [44] and transient 

[45] thermoelastic fracture behavior of 2D solids by the NMM. Gao and 

Wei [46] solved the 2D transient heat conduction problems with the 

complex variable meshless NMM. Zhang et al. [47] acquired the un- 

steady thermal fields by the NMM on Wachspress polygonal elements. 

At present, in the light of the advantages of the NMM and the signif- 

icance of FGMs thermal behavior studies, the NMM is further explored 

to analyze 2D transient heat transfer problems in the FGMs. To this end, 

the rest of the paper is organized as follows. In Section 2 , the govern- 

ing equation, the boundary conditions and initial condition are listed. 

In Section 3 , following a brief introduction to the NMM, the discrete 

formulations of the concerned problems by the NMM are derived, and 

then some details about the solving procedures are described. To ver- 

ify the proposed method, three typical numerical examples are tested in 

Section 4 . Finally, the concluding remarks are drawn in Section 5 . 

2. Governing equation 

Fig. 1 illustrates a transient heat conduction problem in a 2D body 

composed of the isotropic FGM. The physical domain Ω is enclosed by 

the contour Γ= Γ1 ∪ Γ2 , with Γ1 and Γ2 , respectively, the temperature 

boundary and the heat flux boundary. The governing equation for this 

problem is 

𝜕 

𝜕 𝑥 1 

( 

𝑘 ( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕 𝑥 1 

) 

+ 

𝜕 

𝜕 𝑥 2 

( 

𝑘 ( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕 𝑥 2 

) 

+ 𝑄 = 𝜌( 𝐱 ) 𝑐( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕𝑡 

(1) 

where 𝜕 denotes partial derivative. k, 𝜌 and c are, respectively, the ther- 

mal conductivity, the density and the specific heat at constant pressure 

of the FGM and may vary spatially with x = ( x 1 , x 2 ). T, t and Q denotes, 

respectively, the temperature, the time and the heat source. 

The associated essential and natural boundary conditions are 

𝑇 ( 𝐱, 𝑡 ) = 𝑇 ( 𝐱, 𝑡 ) on Γ1 (2) 

− 𝑘 ( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕 𝑥 1 

𝑛 1 − 𝑘 ( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕 𝑥 2 

𝑛 2 = 𝑞 ( 𝐱 , 𝑡 ) on Γ2 (3) 

where 𝑇 and 𝑞 are, respectively, the given temperature on Γ1 and the 

heat flux on Γ2 . ( n 1 , n 2 ) = n is the outward unit normal to the domain 

in Fig. 1 . 

As for the initial condition, it is written as 

𝑇 ( 𝐱, 𝑡 ) |𝑡 =0 = 𝑇 0 ( 𝐱) (4) 

3. Transient heat conduction analysis of the FGMs by the NMM 

3.1. A brief introduction to the NMM 

The NMM, proposed by Shi [14] as the extension and promotion 

of the discontinuous deformation analysis [48] , was originally devel- 

oped to efficiently and accurately capture the deformation behavior of 

rock mass, and has been widely adopted in other areas as mentioned in 

Section 1 . In view that one of the major differences between the NMM 

and the well-known FEM lies in preprocessing, the general NMM dis- 

cretization procedure is presented herein. To discretize a physical do- 

main by the NMM, we firstly construct an MC, which is formed by a cer- 

tain amount of mathematical patches (MPs) and should be large enough 

to cover the whole domain. As for the MPs, they may be composed of 

arbitrarily-shaped mathematical elements and may also be overlapped. 

Following, the corresponding physical patches (PPs) can be produced 

through the intersection of the MPs and the physical domain. The col- 

lection of the PPs then establishes the PC. Finally, after the intersection 

operation of as many as possible PPs, each non-overlapped section in all 

the PPs is just a manifold element (ME). 

To make the above process clearer, the discretization of a rectangular 

physical domain in Fig. 2 a is illustrated. To start with, an MC made up 

of a triangular MP M 1 and a circular MP M 2 in Fig. 2 b is chosen to cover 

the rectangle. The intersection of the domain and the MPs generates the 

PC, which includes two PPs, i.e., P 1 and P 2 in Fig. 2 c. The two PPs finally 

give three MEs, that is, E 1 , E 2 and E 3 in Fig. 2 d. 

After the above procedure, the NMM approximation can be obtained. 

For the present problems, the transient temperature on the ME E is ex- 

pressed as 

𝑇 ℎ ( 𝐱, 𝑡 ) = 

𝑛 ∑
𝑖 =1 

𝑤 𝑖 ( 𝐱) 𝑇 𝑃 𝑖 
( 𝐱, 𝑡 ) (5) 

where n is the number of PPs shared by E and w i ( x ) is the partition 

of unity weight function on the i th PP [18] . 𝑇 𝑃 
𝑖 
( 𝐱, 𝑡 ) represents the local 

function defined on the i th PP, and for continuous PPs (e.g., PPs without 

crack tips or materials interfaces), it is frequently adopted as 

𝑇 𝑃 
𝑖 
( 𝐱, 𝑡 ) = 𝐏 ( 𝐱) 𝐚 𝑖 ( 𝐱, 𝑡 ) (6) 

where a i is the column vector of the unknowns defined on the i th PP. 

P ( x ) is the row vector of polynomial basis taken as 

𝐏 ( 𝐱) = 

[
1 , 𝑥 1 , 𝑥 2 , 𝑥 2 1 , 𝑥 1 𝑥 2 , 𝑥 

2 
2 , …

]
(7) 

3.2. NMM formulations 

Presently, the NMM discrete equations for the concerned problems 

are derived by the weighted residual method in Galerkin form [49] . By 

using the penalty method to enforce the essential boundary condition 

in Eq. (2) (it is noted that although the frequently used penalty method 

was adopted herein, other techniques such as the Lagrange multiplier 

method [50] and the scheme proposed in [51] are also applicable), the 

equivalent integral of Eqs. (1) –(3) is given by 

∫Ω 𝜑 

[ 
𝜌𝑐 

𝜕𝑇 

𝜕𝑡 
− 

𝜕 

𝜕 𝑥 1 

( 

𝑘 
𝜕𝑇 

𝜕 𝑥 1 

) 

− 

𝜕 

𝜕 𝑥 2 

( 

𝑘 
𝜕𝑇 

𝜕 𝑥 2 

) 

− 𝑄 

] 
𝑑Ω+ ∫Γ1 𝜑 1 𝜆

(
𝑇 − 𝑇 

)
𝑑Γ

+ ∫Γ2 𝜑 2 

( 

𝑘 
𝜕𝑇 

𝜕 𝑥 1 
𝑛 1 + 𝑘 

𝜕𝑇 

𝜕 𝑥 2 
𝑛 2 + 𝑞 

) 

𝑑Γ = 0 (8) 
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