
Engineering Analysis with Boundary Elements 88 (2018) 156–169 

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

An inverse boundary element method computational framework for 

designing optimal TMS coils 

Clemente Cobos Sánchez a , ∗ , Francisco Javier Garcia-Pacheco 

b , Jose Maria Guerrero Rodriguez a , 
Justin Robert Hill c 

a Departamento Ingeniería de Sistemas y Electrónics, Avenida de la Universidad, 10, E-11519 Puerto Real Cádiz, Spain 
b Departamento de Matemáticas, Avenida de la Universidad, 10, E-11519, Puerto Real Cádiz, Spain 
c Department of Mathematics, Temple College, Temple Texas, 76504 USA 

a r t i c l e i n f o 

Keywords: 

Medical device design 

Boundary element method 

Convex optimisation 

TMS 

Field synthesis 

a b s t r a c t 

An inverse boundary element method and efficient optimisation techniques were combined to produce a versatile 

framework to design optimal TMS coils. The presented approach can be seen as an improvement and extension 

of the work introduced by Cobos Sanchez et al. [1] where the optimality of the resulting coil solutions was not 

guaranteed. This new numerical framework based on a constant boundary element method has been efficiently 

applied to produce optimal TMS coils with arbitrary geometry, allowing the inclusion of new coil features in 

the design process, such as optimised maximum current density or reduced temperature. Even the structural 

properties of the human head were considered using this approach at the design stage to produce more realistic 

TMS stimulators. Several examples of TMS coils were designed and simulated to demonstrate the validity of the 

proposed boundary element method approach, and the obtained results show that the described method is an 

efficient tool for the design of optimal TMS stimulators, which can be applied to a wide range of coil geometries 

and performance requirements considering the natural variability in the human head properties. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Transcranial Magnetic Stimulation (TMS) is a non-invasive tech- 
nique to stimulate the brain, which is applied to studies of cortical effec- 
tive connectivity, presurgical mapping, psychiatric and medical condi- 
tions, such as major depressive disorder, schizophrenia, bipolar depres- 
sion, post-traumatic, stress disorder and obsessive-compulsive disorder, 
amongst others [2] . 

In TMS, strong current pulses driven through a coil are used to in- 
duce an electric field stimulating neurons in the cortex. The efficiency 
of the stimulation is determined by coil geometry, orientation, stimulus 
intensity, depth of the targeted tissue and some other factors, such as 
stimulus waveform and duration. 

The TMS stimulator most commonly employed is the so called figure- 
of-eight or butterfly coil, but since the invention of this technique nu- 
merous coil geometries have been proposed to improve the performance 
and spatial characteristics of the electromagnetic stimulation [3] . 

The problem in TMS coil design is to find optimal positions for the 
multiple windings of coils (or equivalently the current density) so as 
to produce fields with the desired spatial characteristics and properties 
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[4,5] (high focality, field penetration depth, low inductance, low heat 
dissipation, etc.). 

In engineering similar problems exist to the one found in TMS 
coil design, specifically, problems where one needs to determine 
a quasi-static spatial distribution of electric currents flowing on a 
conductive surface subjected to electromagnetic constraints. Some of 
these problems have been successfully solved by modelling the current 
under search in terms of the stream function using a boundary element 
method (BEM). A relevant application can be found in magnetic 
resonance imaging (MRI), where gradient coils have been efficiently 
designed following this technique [6,7] . 

The first effort to incorporate this numerical strategy to formulate a 
TMS coil design technique was presented by Cobos Sanchez et al. [1] , 
in which a stream-function based current model is incorporated into 
an inverse boundary element method (IBEM). In that work, the desired 
current distribution is eventually obtained by solving an optimization 
problem, one in which a cost function or functional formed with a 
weighted linear combination of all the objectives, is minimized using 
classical techniques, such as simple partial derivation. 

The computational approach in [1] demonstrated flexibility for the 
inclusion of new coil features in the design process, such as minimiza- 
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tion of the magnetic stored-energy, minimization of power dissipation 
or minimization of the undesired electric field induced in non target 
regions of the cortex. Unfortunately, despite the efficiency of the TMS 
stimulators designed using the stream function IBEM in [1] , it was 
not known how optimal these coil solutions were. Especially since the 
associated optimisation involved a maximisation problem, which has 
to be rigorously tackled so as to produce the most effective stimulation 
of the desired cortex regions. 

More recently, Koponen et al. [5] have also made use of a stream 

IBEM to develop another method for designing TMS coils of any desired 
overall shape and size, where the stored energy and focality can be con- 
trolled. Although the stimulators produced in [5] have a remarkable 
performance, they exhibit areas of high winding density over the region 
of stimulation. These dense portions of return windings are associated 
to high peak temperatures, and may also lead to unpractical designs, 
specially in TMS coils that are constructed from finite sized wire where 
there is a minimum wire separation that can be built. 

The development of techniques capable of spreading the closest 
wires would be therefore beneficial to improve the buildability and 
thermal behaviour of coils designed by using a stream IBEM. 

On the other hand, applications of TMS for diagnostic and therapeu- 
tic purposes are constantly growing, being often restricted by technical 
limitations [2] . The ability of the BEM to solve heat [8–11] and vibra- 
tion [12] problems, along with the versatility of stream function based 
techniques opens up the possibilities of overcoming some of these re- 
strictions with the design of a new generation of TMS stimulators with 
improved performance and novel properties, such as reduced mechan- 
ical stress, minimum coil heating, optimized maximum current density 
amongst others. 

Nonetheless, most of these new performance features increase the 
mathematical complexity of the TMS coil design, and prompt the need 
to consider a robust computational framework to rigorously describe 
the problem and more efficient optimisation techniques, as classical 
approaches can no longer be straightforwardly applied to handle new 

non-linear requirements. 
In this work, the numerical approach in [1] is improved to produce a 

computational optimisation framework for designing truly optimal TMS 
coils of arbitrary shape with novel performance properties such as, for 
instance, reduced coil heating or optimized current density; the latter is 
used to illustrate how the buildability of a stimulator designed in [5] can 
be increased. 

Moreover, the suggested method here allows the structural proper- 
ties of the human head to be considered in the design process to produce 
more realistic TMS stimulators. 

The presented numerical approach is a combination of general 
optimisation techniques with a stream function IBEM, which permits 
the modelling of most of the TMS coil performance features as convex 
objectives. 

The structure of this work is as follows. Firstly an outline of the 
stream function IBEM is presented in Section 2 , which leads to the for- 
mulation of the TMS coil design problem in Section 3 . Finally we illus- 
trate the validity of this IBEM approach with the design and performance 
evaluation of several examples of TMS stimulators of different geome- 
tries, which have been chosen to demonstrate the suggested method, to 
elucidate the behaviour of new TMS coil requirements and how they 
can be use to improve performance and buildability. 

2. Numerical model 

2.1. The current density 

A model of the current under search can be achieved by using a con- 
stant boundary element method (BEM), that allows the current distri- 
bution to be defined in terms of the nodal values of the stream function 
and elements of the local geometry (see [13] ). So let us assume that 
the surface, 𝑆 ⊆ ℝ 

3 , on which we want to find the optimal current, is 

divided into T triangular flat elements with N nodes, which are lying at 
each vertex of the element. If we consider the barycenters of the mesh 
triangles as 𝐑 𝐓 = { 𝐫 1 , … , 𝐫 𝑇 } , the current density at each element can 
be written as 

𝐉∶ 𝐑 𝐓 ×ℝ 

𝑁 → ℝ 

3 

( 𝐫, 𝜓) ↦ 𝐉 ( r , 𝜓) ≈ ∑𝑁 

𝑛 =1 𝜓 𝑛 𝒋 
𝑛 ( r ) , 

(2.1) 

where 𝜓 = 

(
𝜓 1 , 𝜓 2 , … , 𝜓 𝑁 

)𝑇 
is the vector containing the nodal values of 

the stream function and 𝒋 𝑛 ∶ 𝐑 𝐓 → ℝ 

3 are functions related to the curl 
of the shape functions [13] known as current elements. In the following, 
𝜓 ∈ ℝ 

𝑁 is going to be the optimization variable. 
If we denote by 𝑗 𝑛 

𝑥 
, 𝑗 𝑛 
𝑦 
, 𝑗 𝑛 
𝑧 

to the Cartesian components of ȷ n , then 

𝐉 ( r , 𝜓) ≈
𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝒋 
𝑛 ( r ) = 

( 

𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝚥 
𝑛 
𝑥 
( r ) , 

𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝚥 
𝑛 
𝑦 
( r ) , 

𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝚥 
𝑛 
𝑧 
( r ) 

) 

and the absolute current density is 𝑗( 𝜓) = ( 𝑗( r 1 , 𝜓) , … , 𝑗( r 𝑇 , 𝜓)) 𝑇 where 

𝑗( r , 𝜓) ∶= 

√ √ √ √ √ 

( 

𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝚥 
𝑛 
𝑥 
( r ) 

) 2 

+ 

( 

𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝚥 
𝑛 
𝑦 
( r ) 

) 2 

+ 

( 

𝑁 ∑
𝑛 =1 

𝜓 𝑛 𝚥 
𝑛 
𝑧 
( r ) 

) 2 

. 

The use of this current model allows the discrete formulation of all 
the magnitudes involved in the problem. An appropriate boundary inte- 
gral formulation of these magnitudes can be found in Appendix C (C.5), 
which allows to produce the following matrix equations that transform 

𝜓 to the various coil properties and objectives can be then constructed. 

2.2. The magnetic field 

The magnetic field at a series of H points, r  

= { r 1 , r 2 , … , r 𝐻 

} 

𝑏 𝑥 𝑖 ( r  

, 𝜓) = 𝐵 𝑥 𝑖 
( r  

) 𝜓, 𝑏 𝑥 𝑖 ∈ ℝ 

𝐻 , 𝐵 𝑥 𝑖 
∈ ℝ 

𝐻×𝑁 , 𝑥 𝑖 = 𝑥, 𝑦, 𝑧. (2.2) 

The coefficient 𝐵 𝑥 𝑖 
( ℎ, 𝑛 ) = 𝑏 𝑛 

𝑥 𝑖 
( r ℎ ) , is the 𝑥 𝑖 − component of the magnetic 

induction produced by the current element associated to the n th -node in 
the prescribed h th -point in r  

. 

2.3. The stored energy in the coil 

𝑊 ( 𝜓) = 𝜓 𝑇 𝐿𝜓, 𝐿 ∈ ℝ 

𝑁×𝑁 , (2.3) 

where L is the inductance matrix, which is a full symmetric matrix, and 
since the amount of stored magnetic energy is always a positive 

𝜓 𝑇 𝐿𝜓 > 0 , ∀𝜓 ∈ ℝ 

𝑁 , 𝜓 ≠ 0 (2.4) 

then L is positive definite. 

2.4. The resistive power dissipation of the coil 

𝑃 ( 𝜓) = 𝜓 𝑇 𝑅𝜓, 𝑅 ∈ ℝ 

𝑁×𝑁 . (2.5) 

where R is the resistance matrix, which is also symmetric and positive- 
definite. Moreover, the power dissipation can be related to the current 
at the surface as 𝑅 ∝ 𝐽 𝑇 

𝑥 
𝐽 𝑥 + 𝐽 𝑇 

𝑦 
𝐽 𝑦 + 𝐽 𝑇 

𝑧 
𝐽 𝑧 . 

2.5. The electric field 

The electric field induced in a series of M points inside of the con- 
ducting system [7] , r  

= { r 1 , r 2 , … , r 𝑀 

} 

𝑒 𝑥 𝑖 ( r  

, 𝜓) = 𝐸 𝑥 𝑖 
( r  

) 𝜓, 𝑒 𝑥 𝑖 ∈ ℝ 

𝑀 , 𝐸 𝑥 𝑖 
∈ ℝ 

𝑀×𝑁 , 𝑥 𝑖 = 𝑥, 𝑦, 𝑧. (2.6) 

where the coefficient 𝐸 𝑥 𝑖 
( ℎ, 𝑛 ) , is the 𝑥 𝑖 − component of the electric field 

induced by the current element associated to the n th -node in the pre- 
scribed m 

th -point in the conducting system r  

. It is worth noting that 
Eq. (2.6) can also be used to described the electric field induced in pre- 
scribed multi-compartment volume conductor made of different homo- 
geneous sub-domains [14] with different electrical properties, as a rep- 
resentation of a heterogeneous system. 
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