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a b s t r a c t 

In this paper, a new and effective radial integration boundary element method (RIBEM) is presented to solve non- 

linear heat conduction with temperature dependent thermal conductivity of materials. Boundary-domain integral 

equation is formulated for nonlinear heat conduction by utilizing the fundamental solutions for the correspond- 

ing linear heat conduction, which contains a domain-integral due to the temperature dependence of the thermal 

conductivity of the materials. Two different approaches based on the radial basis functions are implemented 

to approximate the unknowns appearing in domain integrals. The arising domain-integral is converted into the 

equivalent boundary integrals using the radial integration method (RIM), resulting in a pure boundary element 

analysis algorithm. Newton − Raphson iterative method is applied to solve the final system of algebraic equations 

after the discretization. Numerical examples are presented to demonstrate the accuracy and the efficiency of the 

present method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonlinear heat transfer analysis is very important for many practi- 
cal engineering areas [1–3] . Since it is very difficult to find analytical 
solutions, numerical methods are widely used for the analysis, such as 
finite element method (FEM), finite difference method (FDM) and finite 
volume method (FVM). The FEM is a well-established tool for analyz- 
ing non-linear and non-homogenous problems in engineering. Never- 
theless, it is very time-consuming, which limits the application of the 
FEM method to some complex problems. To avoid the mentioned dif- 
ficulties, boundary element methods (BEM) have been established and 
developed during the past two decades. The traditional boundary in- 
tegral equations dealing with non-homogeneous [1,2] and non-linear 
heat conduction problems [3–9] include domain integrals in the ulti- 
mate integral equations. In order to evaluate these domain integrals, 
the computational domain region is required to be discretized into in- 
ternal cells, making BEM lose its distinct advantage of boundary-only 
discretization. To circumvent this difficulty, some methods of transform- 
ing domain integrals into equivalent boundary integrals are frequently 
used. In these methods, the dual reciprocity method (DRM) developed 
by Brebbia [10] is extensively used. However, DRM requires particular 
solutions for the basic functions, which restricts its application to the 
complicated cases. Recently, a new transformation methodology, the ra- 
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dial integration method (RIM), has been proposed by Gao [11] , which 
not only can convert any complicated domain integrals into the equiv- 
alent boundary in a unified way without using any particular solutions, 
but also can remove a variety of singularities appearing in the domain 
integrals. Due to the advantages of RIM, that particular solutions are 
not needed and various domain integrals appearing in the same inte- 
gral equation can be handled simultaneously, RIM-based boundary ele- 
ment methods have won a good favor from many BEM researchers [12–
15] in recent years. However, although the radial integration bound- 
ary element method (RIBEM) is very powerful to deal with the general 
non-linear mechanics problems [16] and non-homogeneous problems 
[17–24] , there is no report about nonlinear heat conduction problems 
with temperature dependent conductivity using RIBEM. 

In this paper, a novel type of 2D and 3D boundary-domain integral 
equation for nonlinear heat conduction problems is developed based 
on the fundamental solution for linear heat conduction problems. The 
arising domain-integral are transformed to the boundary using RIM by 
expressing the variable of temperature as a series of basic functions. To 
approximate the unknown functions, two different approaches based on 
the radial basis functions are implemented. Newton − Raphson iterative 
method is applied to solve the final system of algebraic equations. Some 
2D and 3D examples are presented to demonstrate the accuracy of the 
present method. 
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2. Boundary-domain integral equations for heat conduction 

problems with temperature dependent conductivity 

The governing equation for heat conduction problems in isotropic 
nonhomogeneous media with temperature dependent thermal conduc- 
tivity can be expressed as follows: 

𝜕 

𝜕 𝑥 𝑖 

( 

𝑘 ( 𝑇 ( 𝐱 ) ) 𝜕𝑇 ( 𝐱 ) 
𝜕 𝑥 𝑖 

) 

+ 𝑄 ( 𝐱) = 0 (1) 

where, x i is the i th component of the spatial coordinates at point x , T ( x ) 
the temperature, k ( T ( x )) the temperature dependent thermal conductiv- 
ity at point x and Q ( x ) is the heat-generation rate. The repeated subscript 
i indicates the summation through its range which is 2 for 2D and 3 for 
3D problems. 

Boundary conditions are given as follows: 

𝑇 ( 𝐱) = �̄� ( 𝐱) 

𝑞( 𝐱) = − 𝑘 ( 𝑇 ( 𝐱)) 𝜕𝑇 ( 𝐱) 
𝜕𝐧 

(2) 

In order to derive the boundary integral equation, the weight func- 
tion G ( x, y ) is presented to Eq. (1) and the following domain integral 
item can be written: 

∫Ω 𝐺 ( 𝐱, 𝐲 ) 𝜕 
𝜕 𝑥 𝑖 

( 

𝑘 ( 𝑇 ( 𝐱 ) ) 𝜕𝑇 ( 𝐱 ) 
𝜕 𝑥 𝑖 

) 

𝑑Ω( 𝐱) + ∫Ω 𝐺 ( 𝐱, 𝐲 ) 𝑄 ( 𝐱) 𝑑Ω( 𝐱) = 0 (3) 

where, Ω represents the domain of the problem of interest. 
Using Gauss’s divergence theorem, the domain integral can be 

rewritten as follows: 

∫Ω 𝐺 

𝜕 

𝜕 𝑥 𝑖 

( 

𝑘 ( 𝑇 ) 𝜕𝑇 
𝜕 𝑥 𝑖 

) 

𝑑Ω = ∫Γ 𝐺𝑘 ( 𝑇 ) 𝜕𝑇 
𝜕 𝑥 𝑖 

𝑛 𝑖 𝑑Γ − ∫Γ 𝑘 ( 𝑇 ) 𝑇 
𝜕𝐺 

𝜕 𝑥 𝑖 
𝑛 𝑖 𝑑Γ

+ ∫Ω 𝑇 
𝜕𝐺 

𝜕 𝑥 𝑖 

𝜕𝑘 ( 𝑇 ) 
𝜕 𝑥 𝑖 

𝑑Ω + ∫Ω 𝑘 ( 𝑇 ) 𝑇 𝜕 

𝜕 𝑥 𝑖 

( 

𝜕𝐺 

𝜕 𝑥 𝑖 

) 

𝑑Ω

(4) 

Where, Γis the outer boundary of the domain Ω and n i is the i th compo- 
nent for the outward normal vector n to the boundary Γ. 

If the weight function G ( x, y ) is the Green’s function for Laplace 
equation which satisfies the following equation: 

∫Ω 𝑘 ( 𝑇 ( 𝐱)) 𝑇 ( 𝐱) 𝜕 
𝜕 𝑥 𝑖 

( 

𝜕𝐺( 𝐱, 𝐲 ) 
𝜕 𝑥 𝑖 

) 

𝑑Ω( 𝐱) = − 𝑘 ( 𝑇 ( 𝐲)) 𝑇 ( 𝐲) (5) 

then by substituting the relation into Eq. (4) and the result into Eq. (3) , 
it follows that: 

𝑘 ( 𝑇 ( 𝐲)) 𝑇 ( 𝐲) = − ∫Γ 𝐺 ( 𝐱 , 𝐲 ) 𝑞( 𝐱 ) 𝑑Γ( 𝐱 ) − ∫Γ 𝑘 ( 𝑇 ( 𝐱 )) 
𝜕𝐺 ( 𝐱 , 𝐲 ) 

𝜕𝐧 
𝑇 ( 𝐱 ) 𝑑Γ( 𝐱) 

+ ∫Ω 𝐺 ( 𝐱, 𝐲 ) 𝑄 ( 𝐱 ) 𝑑Ω( 𝐱 ) + ∫Ω
𝜕𝐺 ( 𝐱 , 𝐲 ) 

𝜕 𝑥 𝑖 

𝜕𝑘 ( 𝑇 ( 𝐱)) 
𝜕 𝑥 𝑖 

𝑇 ( 𝐱) 𝑑Ω( 𝐱) 

(6) 

where q ( x ) is the heat flux 

𝑞( 𝐱) = − 𝑘 ( 𝑇 ( 𝐱)) 𝜕𝑇 ( 𝐱) 
𝜕 𝑥 𝑖 

𝑛 𝑖 ( 𝐱) (7) 

The Green’s function G ( x, y ) in Eq. (5) is 

𝐺 ( 𝐱 , 𝐲 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 
2 𝜋

ln 
(1 
𝑟 

)
𝑓 or 2D problems 

1 
4 𝜋𝑟 

𝑓 or 3D problems 
(8) 

where r is the distance between the source point y and the field point x . 

Eq. (6) is the boundary integral equation for the steady state heat 
conduction with temperature dependent thermal conductivity. It is ef- 
fective only for internal points. For boundary points, a similar integral 
equation can be acquired by letting y →Γ as is done in traditional BEM 

books [1] . 

3. Transformation of domain integral to boundary by RIM 

In this item, the two domain integrals appearing in Eq. (6) are trans- 
formed into equivalent boundary integrals by using the radial integra- 
tion method (RIM) [11] . If the heat generation rate Q( x ) is a known 
function of the coordinates x , RIM can be directly employed to trans- 
form the first domain integral in Eq. (2) to the boundary referring to Ref. 
[12] . However, for the last domain integral of Eq. (6) , since the temper- 
ature is unknown, the formulations of RIM cannot be directly used. In 
order to solve this problem, the unknowns are approximated by series 
of prescribed radial basis functions (RBFs). In this paper, two different 
approaches based on the radial basis functions are implemented. Se- 
lect 𝜕𝑘 ( 𝑇 ( 𝐱)) 

𝜕 𝑥 𝑖 
𝑇 ( 𝐱) and T ( x ) as radial basis functions and named BEM1 and 

BEM2, respectively. 

3.1. 
𝜕𝑘 ( 𝑇 ( 𝐱)) 

𝜕 𝑥 𝑖 
𝑇 ( 𝐱) as radial basis functions 

For the domain integral appeared in Eq. (6) , the normalized temper- 
ature 𝜕𝑘 ( 𝑇 ( 𝐱)) 

𝜕 𝑥 𝑖 
𝑇 ( 𝐱) can be expressed as 

𝜕𝑘 ( 𝑇 ( 𝐱)) 
𝜕 𝑥 𝑖 

𝑇 ( 𝐱) = 

∑
𝐴 

𝛼𝑖𝐴 𝜙𝐴 ( 𝑅 ) + 𝑎 𝑖𝑘 𝑥 𝑘 + 𝑎 𝑖 0 (9a) 

∑
𝐴 

𝛼𝑖𝐴 = 

∑
𝐴 

𝛼𝑖𝐴 𝑥 𝐴 
𝑗 
= 0 (9b) 

where, R = ‖x − x A ‖ is the distance from the application point A to 
the field point x , 𝛼iA and a ik are coefficients to be decided. Usually, 
the application point A includes all boundary nodes and some internal 
points. The commonly used radial basis function 𝜙A ( R ) can be found in 
Refs. [12–15] . In this paper, the following 4th order spline-type RBF is 
used: 

𝜙𝐴 ( 𝑅 ∕ 𝑑 𝐴 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 − 6 

( 

𝑅 

𝑑 𝐴 

) 2 
+ 8 

( 

𝑅 

𝑑 𝐴 

) 3 
− 3 

( 

𝑅 

𝑑 𝐴 

) 4 
0 ≤ 𝑅 ≤ 𝑑 𝐴 

0 𝑅 ≥ 𝑑 𝐴 

(10) 

where d A is the support size for the application point A . The coefficients 
can be defined by applying the application point A in Eq. (9) at each 
node, which results in the following matrix equation: { 

𝜕𝑘 ( 𝑇 ( 𝐱)) 
𝜕 𝑥 𝑖 

𝑇 ( 𝐱) 
} 

= [ 𝜙] 
{
𝛼𝑖 
}

(11) 

where, { 𝛼i } is a vector consisting of the coefficient 𝛼iA for all application 
nodes and a ik . If no two nodes share the same coordinates, the matrix is 
invertible. Let 𝜕𝑘 ( 𝑇 ( 𝐱)) 

𝜕 𝑥 𝑖 
𝑇 ( 𝐱) = 

𝜕𝑘 ( 𝑇 ( 𝐱)) 
𝜕𝑇 ( 𝐱) 𝑇 ( 𝐱) 

𝜕𝑇 ( 𝐱) 
𝜕 𝑥 𝑖 

, then { 𝛼i } can be expressed 
as 

{
𝛼𝑖 
}
= [ 𝜙] −1 

{ 

𝜕𝑘 ( 𝑇 ( 𝐱)) 
𝜕𝑇 ( 𝐱) 

𝑇 ( 𝐱) 𝜕𝑇 ( 𝐱) 
𝜕 𝑥 𝑖 

} 

(12) 

where, 𝜕𝑇 ( 𝐱) 
𝜕 𝑥 𝑖 

is unknown, in the same manner as above, Let 

𝑇 ( 𝐱) = 

∑
𝐴 

𝛽𝐴 𝜙𝐴 ( 𝑅 ) + 𝛽𝑘 𝑥 𝑘 + 𝛽0 (13) 

∑
𝐴 

𝛽𝑖𝐴 = 

∑
𝐴 

𝛽𝑖𝐴 𝑥 𝐴 
𝑗 
= 0 (14) 
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