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a b s t r a c t 

We apply the Kansa–radial basis function (RBF) collocation method to two-dimensional nonlinear boundary 

value problems. In it, the solution is approximated by a linear combination of RBFs and the governing equation 

and boundary conditions are satisfied in a collocation sense at interior and boundary points, respectively. The 

nonlinear system of equations resulting from the Kansa–RBF discretization for the unknown coefficients in the 

RBF approximation is solved by directly applying a standard nonlinear solver. In a natural way, the value of the 

shape parameter in the RBFs employed in the approximation may be included in the unknowns to be determined. 

The numerical results of several examples are presented and analyzed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radial basis function (RBF) methods have become popular in recent 

years in approximation theory as well as in the numerical solution of 

partial differential equations [1,4] . The most widely used RBF method 

for the latter class of problems is the RBF collocation method due to 

Kansa [13] , known as the Kansa method . The popularity of this method 

is due to its meshlessness which means that only a set of points is re- 

quired in the discretization of the continuous problem. This renders the 

implementation of the method particularly easy, especially for problems 

in complex geometries and/or in three dimensions. A disadvantage of 

the method is the (unknown) optimal choice of the shape parameter 

which is found in most RBFs. Various techniques have been proposed 

for the determination of an appropriate value of the shape parameter, 

see e.g. [5,14,15,18,20,24] . In addition, the RBF collocation methods 

discretization leads to highly ill-conditioned matrices and this has lim- 

ited the accuracy to a certain level. Traditionally, RBF expansions have 

been augmented with linear combinations of low degree polynomial 

basis functions primarily for theoretical reasons. This approach, how- 

ever, leads to little or no improvement in accuracy and has therefore 

been largely ignored in most applications. Recently, however, Yao et al. 

[30] discovered that the accuracy can be significantly improved if the 

RBF approximations are enriched with higher degree polynomial basis 

functions. Although, in general, high degree polynomials are numeri- 

cally notoriously unstable, when coupled with RBFs, this instability is 
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somehow tamed. From numerical observations, if the RBF expansion is 

augmented with low degree polynomial basis functions, the major con- 

tribution to the accuracy of the approximation is due to the RBFs. In 

contrast, when the expansion is augmented with higher degree poly- 

nomial basis functions, it is the polynomials that gradually take over as 

the major contributors to the accuracy and RBFs play the (minor) role of 

merely stabilizing the system. In this paper, we adopt this new modified 

RBF collocation approach of enriching the RBF expansions with polyno- 

mial basis functions to improve the accuracy. In [12] we presented some 

preliminary results for the solution of second order nonlinear bound- 

ary value problems using the Kansa method. In the method proposed in 

[12] the solution is expressed as a linear combination of only radial ba- 

sis functions (see (2.2) below) without the inclusion of the polynomial 

basis as proposed in the current study. The latter improved Kansa approx- 

imation (see (2.5) below) yields considerably superior accuracy than the 

approach used in [12] . Furthermore, in this paper we also consider the 

case of using a predetermined shape parameter instead of determining 

it from the nonlinear solver. 

In this work we shall consider the solution of boundary value prob- 

lems for nonlinear partial differential equations. The RBF discretiza- 

tion of these problems invariably leads to systems of nonlinear equa- 

tions which we shall solve using standard software. In particular, we 

shall be using the MATLAB 

© optimization toolbox routines fsolve 
and lsqnonlin . Since we shall be solving nonlinear problems it seems 
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natural to include the (unknown) value of the shape parameter in the set 

of unknowns of the problem. Thus the solution of the nonlinear problem 

yields not only the coefficients in the RBF approximation to the solution 

but, also, an appropriate value of the shape parameter. As mentioned 

earlier, when the RBF expansions are augmented with high degree poly- 

nomial basis functions, the RBFs play a merely stabilizing (and minor) 

role with regard to accuracy and the shape parameter can be chosen 

more freely. This provides another alternative for choosing the shape pa- 

rameter. Moreover, one of the main attractions of the proposed method 

is its simplicity and the ease with which it can be implemented. 

The paper is organized as follows. In Section 2 we present the type of 

second order boundary value problems considered and describe the for- 

mulation of the Kansa method for their solution. The results of three 

numerical examples are presented in Section 3 . In Section 4 we de- 

scribe the formulation of the proposed method to fourth order bound- 

ary value problems and in Section 5 present the results of two further 

numerical examples. Finally, some concluding remarks are provided in 

Section 6 . 

2. The Kansa method 

2.1. The problem 

We consider the boundary value problem in ℝ 

2 

 𝑢 = 𝑓 in Ω, (2.1a) 

subject to the boundary condition 

 𝑢 = 𝑔 on 𝜕Ω, (2.1b) 

where  is a second order nonlinear elliptic operator and  is a linear 

(or nonlinear) operator describing the boundary condition. 

2.2. The method 

In Kansa ’s method [13] we approximate the solution u of boundary 

value problem by a linear combination of RBFs 

𝑢 𝖭 ( 𝑥, 𝑦 ) = 

𝖭 ∑
𝗇 =1 

𝑎 𝗇 𝜙𝗇 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω. (2.2) 

The RBFs 𝜙𝗇 ( 𝑥, 𝑦 ) , 𝗇 = 1 , … , 𝖭 , can be expressed in the form 

𝜙𝗇 ( 𝑥, 𝑦 ) = Φ( 𝑟 𝗇 ) , where 𝑟 2 𝗇 = ( 𝑥 − x 𝗇 ) 2 + ( 𝑦 − y 𝗇 ) 2 . (2.3) 

Thus each RBF 𝜙𝗇 is associated with a point 
(
x 𝗇 , y 𝗇 

)
. These points {

(x 𝗇 , y 𝗇 ) 
}𝖭 
𝗇 =1 are usually referred to as centers . We shall assume that 

we have 𝖭 int interior centers 
{
(x 𝗇 , y 𝗇 ) 

}𝖭 int 
𝗇 =1 and 𝖭 bry boundary cen- 

ters 
{
(x 𝗇 , y 𝗇 ) 

}𝖭 int + 𝖭 bry 
𝗇 = 𝖭 int +1 

. We take 𝖭 = 𝖭 int + 𝖭 bry . 

In [29] , for scattered data interpolation problems, expansions of cer- 

tain types of conditionally positive definite RBFs were augmented by 

low degree polynomial basis functions to ensure the invertibility of the 

resultant matrices. In the case of the Kansa method, Hon and Schaback 

[11] indicated that the corresponding resultant matrices may be singular 

in only very rare cases. More recently, Fasshauer [8] proposed a mod- 

ification of the Kansa method, based on Hermite collocation, to ensure 

the invertibility of the resulting coefficient matrix. However, because of 

the complexity of the implementation of RBF Hermite collocation, this 

approach has apparently not been well received and, despite the invert- 

ibility issue, the Kansa method remains very popular. Furthermore, in 

terms of accuracy there is no evidence of an obvious benefit in adding 

these terms and, therefore, in most applications they have been ignored. 

Recently, in [30] it was shown that the addition of higher degree poly- 

nomial basis functions in the method of particular solutions (MPS) lead 

to a significant improvement in accuracy. As will we described in the 

sequel, the same approach is also equally effective for the Kansa method. 

Let ℙ 𝗉 be the set of bivariate polynomials of degree up to 𝗉 and {
𝑝 𝗄 
}𝖪 
𝗄 =1 be a basis of ℙ 𝗉 [11,30] . It is known that the number of poly- 

nomial terms for degree 𝗉 is 𝖪 = ( 𝗉 + 1)( 𝗉 + 2)∕2 . The polynomial basis 

is thus 

𝑝 𝗄 ( 𝑥, 𝑦 ) = 𝑥 𝑖 − 𝑗 𝑦 𝑗 , 0 ≤ 𝑗 ≤ 𝑖, 0 ≤ 𝑖 ≤ 𝗉 , for 𝗄 = 1 , … , 𝖪 . (2.4) 

In the modified Kansa method with an augmented polynomial basis, 

the approximation (2.2) of the solution of boundary value problem is 

thus replaced by 

𝑢 𝖭 ( 𝑥, 𝑦 ) = 

𝖭 ∑
𝗇 =1 

𝑎 𝗇 𝜙𝗇 ( 𝑥, 𝑦 ) + 

𝖪 ∑
𝗄 =1 

𝑎 𝖭 + 𝗄 𝑝 𝗄 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω. (2.5) 

An example of an RBF is the normalized multiquadric basis function 

(MQ) 

𝜙𝗇 ( 𝑥, 𝑦 ) = Φ( 𝑟 𝗇 ) = 

√ 

( 𝑐𝑟 𝗇 ) 2 + 1 , (2.6) 

where c is the shape parameter . Such shape parameters are often present 

in RBFs and the determination of their optimal value remains a major 

challenge. 

Alternatively, one may use polyharmonic splines (PS) given by 

𝜙𝗇 ( 𝑥, 𝑦 ) = Φ( 𝑟 𝗇 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑟 2 𝓁−1 𝗇 , in 3D , 

𝑟 2 𝓁 𝗇 log 𝑟 𝗇 , in 2D , 

𝓁 = 1 , 2 , 3 , … (2.7) 

The RBFs 𝑟 2 𝑛 −1 are also known as the radial power RBFs [9] and may 

be used for problems in all (both even and odd) dimensions. Clearly, 

the advantage of PS and radial power RBFs is the absence of a shape 

parameter. 

In addition to the centers we consider the collocation 

points 
{
( 𝑥 𝗆 , 𝑦 𝗆 ) 

}𝖬 

𝗆 =1 ∈ Ω . Of these, we have 𝖬 int interior colloca- 

tion points 
{
( 𝑥 𝗆 , 𝑦 𝗆 ) 

}𝖬 int 
𝗆 =1 and 𝖬 bry boundary collocation points {

( 𝑥 𝗆 , 𝑦 𝗆 ) 
}𝖬 int + 𝖬 bry 
𝗆 = 𝖬 int +1 

. We take 𝖬 = 𝖬 int + 𝖬 bry . 

Note that the number of centers is normally taken to be less than the 

number of collocation points. 

The coefficients 
{
𝑎 𝗇 
}𝖭 + 𝖪 
𝗇 =1 in Eq. (2.5) are determined from the col- 

location equations 

 𝑢 𝖭 ( 𝑥 𝗆 , 𝑦 𝗆 ) = 𝑓 ( 𝑥 𝗆 , 𝑦 𝗆 ) , 𝗆 = 1 , … , 𝖬 int , (2.8a) 

 𝑢 𝖭 ( 𝑥 𝗆 , 𝑦 𝗆 ) = 𝑔( 𝑥 𝗆 , 𝑦 𝗆 ) , 𝗆 = 𝖬 int + 1 , … , 𝖬 int + 𝖬 bry . (2.8b) 

In addition to (2.8a) and (2.8b) we impose the standard insolvency 

conditions [9, Chapter 6] , see also [3] , 

𝖭 int ∑
𝗇 =1 

𝑎 𝗇 
{ 𝑝 𝗄 

}
(x 𝗇 , y 𝗇 ) = 0 , 𝗄 = 1 , … , 𝖪 , (2.8c) 

and 

𝖭 ∑
𝗇 = 𝖭 int +1 

𝑎 𝗇 
{ 𝑝 𝗄 

}
(x 𝗇 , y 𝗇 ) = 0 , 𝗄 = 1 , … , 𝖪 . (2.8d) 

In fact we may combine (2.8c) and (2.8d) as 

𝖭 int ∑
𝗇 =1 

𝑎 𝗇 
{ 𝑝 𝗄 

}
(x 𝗇 , y 𝗇 ) + 

𝖭 ∑
𝗇 = 𝖭 int +1 

𝑎 𝗇 
{ 𝑝 𝗄 

}
(x 𝗇 , y 𝗇 ) = 0 , 𝗄 = 1 , … , 𝖪 . (2.8e) 

We have 𝖬 + 𝖪 equations in 𝖭 + 𝖪 unknown coefficients 𝒂 = [
𝑎 1 , 𝑎 2 , … , 𝑎 𝖭 + 𝖪 

]𝑇 
and we therefore take 𝖬 ≥ 𝖭 . 

In case the shape parameter is included in the unknowns then the 

number of unknowns becomes 𝖭 + 𝖪 + 1 consisting of a and c and we 

need to take 𝖬 ≥ 𝖭 + 1 . 
Since the operator  is nonlinear, the system of 𝖬 + 𝖪 equations 

(2.8a), (2.8b) , and (2.8e) is nonlinear and can be written in the form 
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