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a b s t r a c t 

In this paper, the problem for determining the inner boundary of the Poisson equation in an arbitrary doubly- 

connected plane domain is solved, which recovers an unknown inner boundary of a rigid inclusion under the 

over-specified Cauchy data on the accessible outer boundary. First, a homogenization function is derived to 

annihilate the Dirichlet and Neumann data over-specified on the outer boundary. Second, a new concept of 

boundary functions is introduced, which automatically satisfy the homogeneous boundary conditions on the 

outer boundary. Besides the lowest order elementary boundary function, other higher-order boundary functions 

are obtained by multiplying the elementary boundary function to the Pascal triangle. Then, by a homogenization 

technique we can obtain a transformed Poisson equation in a reduced doubly-connected domain in terms of the 

transformed variable and solve it by the domain type collocation method, whose numerical solution is expanded 

by a sequence of boundary functions. The nonlinear equation for determining the unknown inner boundary is 

derived, which is convergent fast. The accuracy and robustness of present homogenization boundary function 

method are assessed through five numerical examples, by comparing the exact inner boundary to the recovered 

one under a large noisy disturbance. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

For the elliptic type partial differential equations (PDEs), there are 

different inverse problems. Among them the inverse geometry problems 

(IGPs) are of the most challenged ones because the solutions of IGPs de- 

pend nonlinearly on the boundary curve. Some typical examples of the 

IGPs could be the determination of the interface between liquid and solid 

phases and the detection of cracks and voids inside the solid materials. 

The non-destructive testing is a popular method used in the engineer- 

ing industry to detect the void and rigid inclusion. The problem is to de- 

tect the boundary of a void and rigid inclusion by means of the current 

flux and potential measurements on an accessible outer boundary in a 

doubly-connected domain. It is known that the IGPs are highly ill-posed 

[1–5] , which inherit the non-characteristic property of the Cauchy prob- 

lem for the elliptic type PDEs. Usually, a small error in the given data 

can terribly detract the accuracy of numerical solution in the prediction 

of inner shape. The regularized Trefftz method has been successfully ap- 

plied to detect the different inner shapes in the two-dimensional voids 

[6] . 
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For the related works on the IGPs in the steady-state heat conduction 

equation, the readers can refer [7–9] . The numerical methods used to re- 

construct the voids in steady-state or transient heat conduction problems 

are numerous [10–15] . We study a rigid inclusion problem inside an ar- 

bitrary plane domain, of which Bormann et al. [16] and Ivanyshyn and 

Kress [17] have employed the method of fundamental solutions (MFS)- 

based reconstruction technique to detect the rigid inclusions for the two- 

dimensional stationary heat conduction equation of the isotropic media. 

The remainder of this paper is arranged as follows. In Section 2 we 

specify the inner boundary determination problem of the Poisson equa- 

tion in a doubly-connected plane domain and derive a homogenization 

function, which annihilates the over-specified Cauchy data on the outer 

boundary. Then, a homogenization technique and a new concept of 

boundary functions are introduced in Section 3 , where in a new Pois- 

son equation we express the transformed variable in terms of boundary 

functions as the bases, which satisfy the homogeneous boundary condi- 

tions on the outer boundary automatically. In Section 4 we describe the 

numerical algorithm of the homogenization/boundary function method 

for arbitrary prescribed source term in the Poisson equation. Five nu- 

merical examples are given in Section 5 to assess the capability of the 
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new method in the detection of different rigid inclusions of solid mate- 

rials. Finally, the conclusions are drawn in Section 6 . 

2. Homogenization function and variable transformation 

2.1. Problem statement 

We consider the following boundary determination problem of the 

Poisson equation: 

Δ𝑢 = 𝑓 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω, (1) 

𝑢 = ℎ 1 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Γ1 , (2) 

𝑢 𝑛 = 𝑔( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Γ1 , (3) 

𝑢 = ℎ 2 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Γ2 , (4) 

where f ( x, y ), h 1 ( x, y ), g ( x, y ) and h 2 ( x, y ) are given functions. Ω is a star- 

like doubly-connected plane domain with boundary Γ = Γ1 ∪ Γ2 , where 

Γ1 ∩ Γ2 = ∅. While Γ1 denotes an outer boundary, Γ2 is an inner bound- 

ary. On Γ1 the Cauchy data are over-specified in order to determine the 

unknown inner boundary Γ2 . In the rigid inclusion detection problem 

one may set ℎ 2 ( 𝑥, 𝑦 ) = 0 . Notice that if the inclusion is an insulator, i.e. 

zero conductivity, then the condition 𝑢 = 0 should be replaced by 𝑢 𝑛 = 0 
on Γ2 . The one with 𝑢 𝑛 = 0 on Γ2 to detect the cavity is more difficult to 

solve, which will be studied in other place. 

The above n is an outward unit normal on Γ1 . If the inner bound- 

ary shape Γ2 can be made available, together with the prescribed data 

h 2 ( x, y ), then the data are completed on the whole boundary, and the 

solution of the Poisson equation in the doubly-connected domain can 

be obtained. So the present inverse geometry problem (IGP) is such 

an inverse problem that giving over-specified data on the accessible 

outer boundary Γ1 , we seek an unknown inaccessible inner boundary 

Γ2 , where the Dirichlet data h 2 ( x, y ), ( x, y ) ∈Γ2 are given. 

For the direct problem in a singly connected domain, giving condi- 

tions in Eqs. (2) and (3) are contradictory. However, because the pre- 

sented IGP is in a doubly connected domain to seek an unknown inner 

boundary, giving conditions in Eqs. (2) and (3) are not contradictory, 

which are over-specified to help the solution of finding an unknown 

inner boundary. In fact, it includes a Cauchy problem in the doubly 

connected domain. 

The outer boundary Γ1 in the polar coordinates ( 𝑥, 𝑦 ) = 

( 𝑟 cos 𝜃, 𝑟 sin 𝜃) is described by Γ1 = {( 𝑟, 𝜃) |𝑟 = 𝜌( 𝜃) , 0 ≤ 𝜃 ≤ 2 𝜋} , where 

𝜌( 𝜃) is a radius function of the outer boundary. In above, u n ( 𝜌, 𝜃) is 

defined by [18] 

𝑢 𝑛 ( 𝜌, 𝜃) = 𝜂( 𝜃) 
[ 
𝜕𝑢 ( 𝜌, 𝜃) 

𝜕𝜌
− 

𝜌′

𝜌2 
𝜕𝑢 ( 𝜌, 𝜃) 

𝜕𝜃

] 
, (5) 

where 

𝜕 𝑢 ( 𝜌, 𝜃) 
𝜕𝜌

= 

𝜕 𝑢 ( 𝑟, 𝜃) 
𝜕𝑟 

||||𝑟 = 𝜌( 𝜃) , 
𝜂( 𝜃) = 

𝜌( 𝜃) √
𝜌2 ( 𝜃) + 𝜌′( 𝜃) 2 

, (6) 

in which the prime denotes the differential with respect to 𝜃. 

Without frequently switching the notations between the two differ- 

ent coordinates systems, we sometimes write function in terms of ( x, y ) 

rather than that in terms of ( r, 𝜃). Because the data h 1 ( x, y ) and g ( x, y ) 

on the outer boundary Γ1 are given, one has 

ℎ 1 ( 𝜃) ∶= ℎ 1 ( 𝜌( 𝜃) cos 𝜃, 𝜌( 𝜃) sin 𝜃) , 0 ≤ 𝜃 ≤ 2 𝜋, (7) 

𝑔 ( 𝜃) = 𝑔 ( 𝜌( 𝜃) cos 𝜃, 𝜌( 𝜃) sin 𝜃) , 0 ≤ 𝜃 ≤ 2 𝜋. (8) 

For saving notations we use the same symbols h 1 and g to denote 

h 1 ( x, y ) and g ( x, y ) on the outer boundary Γ1 . 

2.2. Variable transformation 

Our goal is converted the IGP stated in the previous section to solving 

a direct problem for the new variable in a new Poisson equation by 

using the domain type collocation method. The strategy is that we seek 

a variable transformation by 

𝑣 ( 𝑥, 𝑦 ) = 𝑢 ( 𝑥, 𝑦 ) − 𝐵 

0 ( 𝑟, 𝜃) , (9) 

and solve v ( x, y ) by a new Poisson equation: 

Δ𝑣 = 𝑓 ( 𝑥, 𝑦 ) − Δ𝐵 

0 , (10) 

𝑣 ( 𝑥, 𝑦 ) = 0 , 𝑣 𝑛 ( 𝑥, 𝑦 ) = 0 , ( 𝑥, 𝑦 ) ∈ Γ1 . (11) 

B 

0 ( r, 𝜃) plays a key role to diminish the over-specified boundary con- 

ditions on Γ1 , which will be searched in the next section. Because the 

boundary conditions on Γ1 are homogeneous for the new Poisson equa- 

tion, it is easily to find some suitable homogeneous bases for the new 

variable v , such that we can use the domain type collocation method 

to directly solve the above direct problem to find v , and then follows 

Eq. (9) one can easily obtain 𝑢 ( 𝑥, 𝑦 ) = 𝑣 ( 𝑥, 𝑦 ) + 𝐵 

0 ( 𝑟, 𝜃) . 

2.3. Homogenization function 

In this section, we construct the homogenization function B 

0 ( r, 𝜃), 

which is a key point for the domain type method to solve v ( x, y ). 

Definition 1. A function defined in a domain Ω with Γ1 being its outer 

boundary is said to be a homogenization function , if the over-specified 

Cauchy data on Γ1 is satisfied by that function. 

Now we propose a problem that does there exist a function B 

0 ( r, 𝜃) 

in the domain Ω, such that on the outer boundary 𝑟 = 𝜌( 𝜃) we have 

𝐵 

0 ( 𝜌, 𝜃) = ℎ 1 ( 𝜃) , (12) 

𝐵 

0 
𝑛 
( 𝜌, 𝜃) = 𝑔( 𝜃) , (13) 

where according to the Definition (5) of the normal derivative on Γ1 

and replacing u ( 𝜌, 𝜃) by B 

0 ( 𝜌, 𝜃) we have 

𝐵 

0 
𝑛 
( 𝜌, 𝜃) = 𝜂( 𝜃) 

[ 

𝜕 𝐵 

0 ( 𝑟, 𝜃) 
𝜕 𝑟 

|||||𝑟 = 𝜌( 𝜃) − 

𝜌′

𝜌2 
𝜕 𝐵 

0 ( 𝑟, 𝜃) 
𝜕 𝜃

|||||𝑟 = 𝜌( 𝜃) 
] 

= 𝜂( 𝜃) 
[ 
𝜕 𝐵 

0 ( 𝜌, 𝜃) 
𝜕 𝜌

− 

𝜌′

𝜌2 
𝜕 𝐵 

0 ( 𝜌, 𝜃) 
𝜕 𝜃

] 
. (14) 

We can derive the following important result. 

Theorem 1. The homogenization function in terms of polar coordinates 

( r, 𝜃) : 

𝐵 

0 ( 𝑟, 𝜃) = ℎ 1 ( 𝜃) + [ 𝑟 − 𝜌( 𝜃)] 𝜕𝑢 ( 𝜌, 𝜃) 
𝜕𝜌

(15) 

in the domain Ω is a solution of Eqs. (12) and (13) , i.e., 

𝐵 

0 ( 𝜌, 𝜃) = ℎ 1 ( 𝜃) , 𝐵 

0 
𝑛 
( 𝜌, 𝜃) = 𝑔( 𝜃) . 

Moreover, on the outer boundary Γ1 : 

𝜕 𝐵 

0 ( 𝜌, 𝜃) 
𝜕𝜌

= 

𝜕 𝑢 ( 𝜌, 𝜃) 
𝜕𝜌

, (16) 

𝜕 𝐵 

0 ( 𝜌, 𝜃) 
𝜕𝜃

= 

𝜕 𝑢 ( 𝜌, 𝜃) 
𝜕𝜃

. (17) 

Proof. From Eq. (15) it is obvious that 𝐵 

0 ( 𝜌, 𝜃) = ℎ 1 ( 𝜃) as specified by 

Eq. (12) . In order to prove that B 

0 ( r, 𝜃) satisfies Eq. (13) , proving Eqs. 

(16) and (17) is sufficient. 
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