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a b s t r a c t 

The singular edge-based smoothed finite element method (sES-FEM) using triangular (T3) mesh with a special 

layer of five-noded singular elements (sT5) connected to the singular point, was proposed to model fracture prob- 

lems in solids. This paper aims to extend the previous studies on singular fields of any order from − 0.5 to 0, by 

developing an analytical means for integration to obtain the smoothed strains. We provide a more efficient prac- 

tical formulae to estimate the stress intensity factor(SIF) for singular fields of mentioned order. The sT5 element 

has an additional node at each of the two edges connected to the crack tip, and the displacements are enriched 

with necessary terms to simulate the singularity. A weakened weak (W2) formulation is used to avoid the differ- 

entiation to the assumed displacement functions. The stiffness matrix is computed by using the smoothed strains 

calculated analytically from the enriched shape functions. Furthermore, our analytical integration techniques 

reduces the dependency on the order of numerical integration during the computation of the smoothed strain 

matrix. Several examples have been presented to demonstrate the reliability of the proposed method, excellent 

agreement between numerical results and reference observations shows that sES-FEM is an efficient numerical 

tool for predicting the SIF for singular fields. 

Published by Elsevier Ltd. 

1. Introduction 

In the seminal publication of the Smoothed Finite Element Method 

(S-FEM) [1] , Liu introduced the strain smoothing technique [2] into the 

finite element method (FEM) formulation [3,59,85] . It was motivated by 

the idea of combining the well-established FEM for efficiency and sim- 

plicity, with techniques used in the meshfree methods [4] for “softening 

effects ” to improve the accuracy of solutions. The strain smoothing tech- 

nique was used to stabilize the solutions of the nodal integrated mesh- 

free methods [6] . It was also applied to the natural elements method [7] , 

among other applications [4,5] . The essential idea of the S-FEM is the 

reconstruction of the strain field using the strain smoothing technique. 

In the standard Galerkin weak form used in the FEM, the assumed dis- 

placement field makes the numerical model “stiff” [4] . In the smoothed 

Galerkin weak form (which is a typically weakened weak-form or W2 

[4] ), a smoothed strain is used that brings in softening effects and make 

the model “softer ”, while the assumed displacement makes the model 

stiff. Theoretical study of the S-FEM has proven that the strain smoothed 

stiffness matrix is always softer than that created in the standard FEM 

using the same set of nodes, in terms of strain energy norm [7–11] . One 

thus has an important “knob ” to tune the numerical model as desired. 

This feature of S-FEM stands out from the standard FEM and possesses 

∗ Corresponding author. 

E-mail address: bhowmisp@mail.uc.edu (S. Bhowmick). 

a number of important features [18] , because it allows analysts to “de- 

sign ” models base on their needs. One can now create models for upper 

bound solutions (for force driven problems) [13] , and even close-to- 

exact solutions in a norm [19] . Due to the softening effects, S-FEM has 

the capability to perform excellently for highly distorted meshes as well 

as n-sided general polygonal elements [18] . It does not demand high- 

quality mesh, as it usually does in the FEM. 

The S-FEM is a combination of treatments in the FEM and Meshfree 

setting [14–18] . The displacement interpolation in S-FEM is based on 

a standard FEM mesh, and the weak form is evaluated based on the 

smoothing domains created according to the requirements of the ana- 

lyst. The art of the S-FEMs lies now on the novel creation of various 

types of smoothing domains to establish a model of specially desired 

properties. The smoothing domain can alter the strain field within the 

elements; it can also bring information from the neighboring elements. 

Smoothing domains used in S-FEM are the subdomains over which the 

smoothed strain fields are obtained. They can be created based on cells, 

nodes, edges or faces of a background FEM mesh, and hence there is 

a family of S-FEM models. When the smoothing domains are created 

based on cells, one has the cell-based smoothed FEM (CS-FEM), and 

when based on nodes, we have NS-FEM. Similarly, we have edge-based 

smoothed FEM (ES-FEM), face-based smoothed FEM (FS-FEM). There 

are also combined S-FEM models, like the Alpha-FEM [19] . The ES-FEM 
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was found most computationally efficient and having “close-to-exact ”

stiffness [15] . S-FEM has been widely applied to a number of applica- 

tions in the domain of continuum mechanics like dynamics [15] , plastic- 

ity [39–41] , plates and shells [20–25] , piezoelectricity [26] , limit analy- 

sis [42] , fluid-structure interaction [43] , acoustics [37–38] and fracture 

mechanics [27–36] . 

Due to the importance in engineering applications, intensive studies 

have been performed in the field of fracture mechanics over the past 

decades. The capability to predict fracture in a solid structure is of ut- 

most importance to an analyst, several techniques have been used in 

the past for computing important parameters, such as the stress inten- 

sity factor (SIF) at the tip of cracks and using it in a failure criterion 

based on fracture toughness of the material. Alongside experiments, the 

focus has been on the numerical methods to solve fracture problems 

producing singularity at the crack tip to accurately and efficiently com- 

pute the SIF. When a crack is present in a solid, the problem domain 

becomes non-Lipschitzian domain, and the stress will be singular at the 

crack tip, resulting in loss of convergence in the numerical solution. 

Hence special treatments are needed to bring back the convergence rate 

of the numerical model [4] . A typical technique is to “enrich ” the dis- 

placement approximation aiming to produce the singular stress field. 

The common technique is the use of the collapsed quadrilateral element 

in a FEM mesh, using six-node triangles (T6) or eight-node quadrilat- 

erals (Q8) [3] . Several other known methods are the partition of unity 

finite element method PUFEM based on the works of Oden et al [44–

48] , the extended finite element method (X-FEM) [49–55] . More recent 

works include the efficient remeshing techniques [91–93] , the screened- 

Poisson equation [94,95] and the cracking particles method [96,97] . In 

the S-FEM, five-noded singular elements have been developed. It can 

be used in various S-FEM models for simulating the singular stress field 

near the crack tip, including the ES-FEM model using three-noded lin- 

ear triangles elements (T3). It is known as the s-ES-FEM-T3 [32] and has 

been proven with good performance for fracture mechanics problems. 

It uses a base mesh of linear triangular elements, unlike the standard 

singular FEM that needs a mesh of quadrilateral elements (T6 or Q8). 

Many solid structures are built with sharp corners rather than perfect 

cracks, and hence the problem domain is also a typical non-Lipschitzian 

[4] . In such cases, the order of singularity of the stress field is different 

from the idealized cracks. Sharp re-entrant corners can still cause stress 

singularities and thus reduces the longevity of the structure. Thus, a 

careful study of the stress singularity field around shape corners is of 

significant importance. However, very little work has been done in the 

non-Lipschitzian domain, compared to the idealized sharp crack config- 

uration. Since the pioneer paper of Williams [60] , which identifies the 

stress intensification at the vertex of sharp re-entrant corners, a hand- 

ful number of studies have been performed to determine the order of 

singularity at a crack tip and subsequently compute the stress inten- 

sity factor. Sinclair [61–63] has studied the singularity in linear elastic 

fracture mechanics and has proposed numerical techniques to obtain 

stress singularity exponent of singular geometries. On the computation 

of stress intensity factors in singular re-entrant corners, the earliest re- 

search was for wood structures with different size specimens [64–66] . 

Sinclair and Kondo pursued a stress concentration approach to discuss 

a generalized stress intensity factor at re-entrant corners [67] . Sinclair 

et al. [68] also developed an approach to evaluate a contour integral ex- 

tending the work of Stern et al. [69] . Independently, Carpenter [70] used 

the reciprocal work contour integral method of Stern [69] to compute 

stress intensity factors at corners. Carpenter has subsequently studied 

further in these domains and suggested other techniques for determi- 

nation of fracture mechanics parameters [71–73] . Sinclair [74] have 

discussed and compared both these approaches in details. Further work 

has been done by Neville [75] who proposed a statistical approach to 

failure prediction, Gross, and Mendelson [76] , Knesl [77] , Carpentri 

[78] who performed three-point bending of beams to experimentally 

co-relate failure to the re-entrant corner angle has performed a detailed 

study of intensity at sharp corner. 

Lin and Tong [79] , Dunn [80] and Seweryn [81] have done numer- 

ical studies in fracture mechanics of notches, using FEM. Special ele- 

ments have been developed to produce the singularity at the notches. 

The existing standard approach to solving a re-entrant corner includes, 

• A very dense mesh at the re-entrant corner tip (Dunn [80] ). 

• Degenerated asymptotic finite elements (Tracy [82] , Pu et al. [83] ). 

• Hybrid finite elements (Lin and Tong [79] ). 

• Analytical finite elements (Givoli [84] ). 

In the so-called s-ES-FEM method, the singularity at the corner can be 

easily reproduced by directly adding in a proper singularity term in the 

basis function for the interpolation of the displacements. This is because 

the S-FEM uses W2 formulation and hence the simple point interpolation 

methods can be used, and the resultant interpolants are not subjected to 

differentiation and not mapping is required. The energy based interac- 

tion integral method can also be conveniently used in an S-FEM model to 

calculate the SIFs [31] . The concept of s-ES-FEM is straightforward, the- 

oretically rigor, easy for implementation, and hence it is ideal for study 

the fracture mechanics problems. As mentioned earlier, previous studies 

have been performed for geometries with l -Shaped notches [27] , in our 

work, we extend these to the more exhaustive study of the domain of 

linear elastic singular mechanics for arbitrarily shaped notches. 

In this paper, we intend to propose a few extensions of s-ES-FEM for 

linear elastic fracture mechanics of sharp cracks. We show that in the 

singular elements around the crack tip, there is no need to use more than 

one smoothing domain [32] , if a certain number of Gauss points are used 

to compute the smoothed strains. Further, we propose a method based 

on analytical integration along the edges of the smoothing domains, 

thereby eliminating the requirement of Gauss points in general. We also 

study the performance of s-ES-FEM in geometries with a singularity of 

order − 0.5 to 0 with a base mesh of T3 elements together with and a 

layer of T5 elements around the notch-tip. The stability, accuracy, and 

efficiency of this technique are examined through a number of examples. 

We have also confirmed that the SIF values calculated are stable, path 

independent and highly accurate. 

The paper is outlined as follows. In Section 2 , general ES-FEM and 

two-dimensional singular problems are described. In Section 3 , a brief 

idea of singular ES-FEM and numerical techniques to determine the 

stress singularity orders are given. The solution procedure is summa- 

rized in Section 4 . Numerical examples are provided in Section 5 . 

2. Overview of linear fracture mechanics and ES-FEM 

2.1. Governing equations 

Consider a two-dimensional (2D), homogeneous isotropic linear elas- 

tic solid defined in domain Ω bounded by 𝚪 ( 𝚪 = 𝚪𝑈 ∪𝚪𝑡 and 𝚪𝑈 ∩𝚪𝑡 = 0 ) 
containing a traction free re-entrant corner Γc as shown in Fig. 1 . The 

equilibrium equation is given as follows [86] : 

𝛁 ⋅ 𝝈 + 𝒇 𝑏 = 0 𝑖𝑛 Ω (1) 

where ∇ is the divergence operator, 𝝈 is the Cauchy stress tensor, and 

f b is the body force. 

The Dirichlet and Neumann boundary conditions are given as: 

𝐮 ( 𝐱, 𝑡 ) = �̄� ( 𝐱, 𝑡 ) 𝑜𝑛 Γ𝑈 (2) 

𝝈 ⋅ 𝒏 = 𝐟 𝑡 𝑜𝑛 Γ𝑡 (3) 

𝝈 ⋅ 𝒏 = 0 𝑜𝑛 Γ𝑡 (4) 

where n being the outward normal vector on the boundary Γ and ū is 

the prescribed displacement on the displacement boundary ΓU 

The stress–strain relation is given by the constitutive equation 

𝝈 = 𝐃 𝜖 (5) 

2 



Download English Version:

https://daneshyari.com/en/article/6925095

Download Persian Version:

https://daneshyari.com/article/6925095

Daneshyari.com

https://daneshyari.com/en/article/6925095
https://daneshyari.com/article/6925095
https://daneshyari.com

