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ABSTRACT

The buckling parameter is a non-dimensional value that typically represents the type of plate boundary condition (e.g., clamped edge, free edge) and is obtained
from the critical load and geometrical data. This study investigates the variations in the buckling parameter based on plate slenderness considering the effect of
shear deformation in the bending model used for buckling analyses. An alternative boundary element formulation using two integrals containing the geometrical
non-linearity (GNL) effect, with one computed on the domain and the other computed on the boundary, is employed. The kernels of integrals related to the GNL effect
contain the first derivatives of deflection instead of the second derivatives, and no relation is required for the derivatives of the in-plane forces. This formulation
improves the numerical model for free edges or symmetry conditions corresponding to the relationship of one of the natural conditions of the buckling problem to
the boundary integral containing the GNL effect. The values obtained for the buckling parameters in plates containing or not containing a hole are compared with

the expected values from the literature.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The present boundary element formulation for plate-buckling
analyses considers the shear deformation effect to improve the bending
model accuracy, as shown by Reissner for the assessment of stress
concentration around holes [1] and by Mindlin for wave propagation
analyses considering short wavelengths [2]. The geometric non-linearity
(GNL) effect is considered according to the development presented
by Timoshenko and Woinowsky-Krieger [3]. Although classical plate
theory was used in [3], several studies in the literature have adopted
this formulation in buckling analyses for thin or moderately thick plates
considering the effect of shear deformation.

Jones presented a literature review up to 1989 on the buckling of
thin rectangular plates in [4]. Dawe and Roufaeil [5] discussed the GNL
effect in the bending of plates while considering the effect of shear defor-
mation based on the first study presented by Hermann and Armenakas
[6], and they stressed the importance of introducing the derivatives of
rotations beyond the derivatives of deflections in the potential energy
density associated with in-plane forces. Mizusawa [7] showed that the
effect of the derivatives of rotations is greater for certain types of bound-
ary conditions, whereas they are not significant in others for which the
derivatives of deflection were sufficient. Smith [8] proposed a finite el-
ement formulation including both derivatives on displacements in the
buckling of thick plates. Doong [9] and Matsunaga [10] studied im-
provements to the model representing the effect of shear deformation in
plate bending, where the buckling analyses considered the derivatives of
rotations and deflections combined with a high-order theory represent-
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ing the effect of shear deformation. Nevertheless, several studies, e.g.,
Shufrin and Eisenberg [11] and Kitipornchai and Xiang [12], employed
only derivatives of the deflection including or not including the high-
order theory to consider the effect of shear deformation. Srinivast and
Rao [13] employed three-dimensional elasticity theory to perform vi-
bration and buckling analyses of thick orthotropic plates and laminates.
Levy et al. [14] studied the instability of perforated plates with a
central hole. Schlack and Alois [15] computed the critical edge displace-
ment of a simply supported pierced plate under uniform edge displace-
ment. Yang [16] showed that the critical plate load is reduced when a
square hole is considered instead of a circular hole. Brown and Yettram
[17] illustrated the changes in the value of the buckling parameter for
different load combinations according to the ratio between the diameter
of the hole and the plate side. Shakerley and Brown [18] studied plate
buckling with eccentrically positioned holes. El-Sawy and Nazmy
[19] used the finite element method to assess the buckling parameter
value for uniaxial loaded plates according to the ratio between the
diameter of the hole and the plate side. Komur and Sonmez [20] studied
the buckling of perforated plates with a circular hole under linearly
varying in-plane load. Maiorana et al. [21] presented a buckling anal-
ysis of perforated plates under concentrated in-plane loads. Nejad and
Shanmugam [22] presented a buckling analysis of uniaxial loaded per-
forated skew plates. Jayashankarbabu and Karisiddappa [23] presented
the buckling of perforated plates considering the shear deformation
effect instead of the classical plate theory used in studies [14-22].
Several boundary element formulations presented in the literature
performed buckling analyses with the classical theory or Reissner-
Mindlin models. Bezine et al. [24] presented plate-buckling analyses
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using the classical theory with the domain integral introducing the GNL
effect. Liu [25] used the classical theory for the buckling analysis of
circular plates and employed deflections instead of the derivatives of
deflections in the domain integral related to the GNL effect. Manolis
et al. [26] presented a fundamental solution that included the effect
of the uniform in-plane force on the domain to eliminate the domain
integral related to the GNL effect in buckling analyses with the classical
theory. Tanaka and Miyazaky [27] presented a boundary element
formulation to perform buckling analyses of assembled plates using
the classical theory and employed domain integrals for the GNL effect.
Elzein and Syngellakis [28] employed the dual reciprocity method
(DRM) for the GNL effect in buckling analyses with the classical theory.
Nerantzaki and Katsikadelis [29] studied plate buckling considering
variable plate thickness according to the classical theory with a
BEM-based method named the analog equation method. Lei et al.
[30] formulated an integral equation for the geometrically nonlinear
behavior of Reissner plates, where the domain integral for the GNL
effect was discretized into constant triangular cells. Marczak [31] em-
ployed constant rectangular cells in the domain integral discretization
for the GNL effect for buckling analyses using the Reissner model.
The buckling analyses using the Reissner model in Purbolaksono and
Aliabadi [32] presented a comparison of the results obtained with the
DRM versus domain integrations to account for the GNL effect. Doval
et al. [33] employed the radial integration method (RIM) for integrals
related to the GNL effect in the analysis of composite laminate plates
under non-uniform stress fields using the classical theory. Chang-Jun
and Rong [34] performed buckling and post-buckling analyses of
perforated plates with the BEM using the classical plate theory.

The alternative boundary element formulation in this study em-
ploys two integrals containing the GNL effect, with one computed
on the domain and the other computed on the boundary. The first
derivatives of deflection were used in kernels of integrals related to
the GNL effect instead of the second derivatives; no relation is required
for the derivatives of in-plane forces. This formulation improves the
numerical modeling to treat the free edges or symmetry conditions
corresponding to the relationship between one of the natural conditions
of the buckling problem to the boundary integral containing the GNL
effect. The critical loads were obtained with this formulation using an
elastodynamic fundamental solution derived from [37] in problems
with in-plane forces assumed to be invariant with time and deflection
derivatives dependent of the harmonic solution [35,36]. The changes in
value of the buckling parameter according to the plate thickness of non-
perforated plates were presented in [38] for certain types of boundary
conditions with the static fundamental solution [39]. The numerical
implementation employed quadratic shape functions to approximate
displacements, plate-rotations, distributed shears and moments in the
boundary elements; however, constant elements were used to discretize
both integrals related to the GNL effect. Constant elements were the
lower type of element used to evaluate the behavior of this formulation.
An algebraic manipulation using both integrals with the GNL effect
corresponds to performing integrations only on the sides of cells inside
the domain in problems with no free edges. The inverse iteration and
Rayleigh quotient were used to compute the lowest eigenvalue with
the corresponding eigenvector. The values obtained for the buckling
parameters in plates containing or not containing a hole are compared
with the expected values from the literature.

2. Natural conditions and boundary integral equations
The constitutive equations for an isotropic and homogeneous plate

material are
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The plate has a uniform thickness h, D is the flexural rigidity, v is
Poisson’s ratio, w is the deflection, y, is the plate rotation in direction «
and §,, is the Kronecker delta. The product qRE in Eq. (1) corresponds
to the linearly weighted average effect of the normal stress component
in the thickness direction and should be considered in Reissner’s model
[1] but not in Mindlin’s model [2], in which it should be considered
null. The shear parameter «2 is equal to 5/6 and z2/12 for the Reissner
and Mindlin models, respectively. Eqs. (1) and (2) employ a unified
notation for the Reissner and Mindlin models and are written in the
convention adopted in this study, i.e., Latin indices take on values {1,
2 and 3} and Greek indices take on values {1, 2}.
The natural conditions and equilibrium equations can be obtained
using the calculus of variations [40,41]. The energy functional of the

plate under static loads is given by
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Eq. (3) represents the energy functional of the plate in the complete
form, which is similar to that presented in [12]. The first integral (do-
main integral) is the strain energy, and the last integral is the potential
energy due to in-plane compression forces. The second and third inte-
grals are the potential energy due to out-of-plane loads: q is the normal
load distributed on the domain, and EM;, EM, and EQ are the couple in
direction 1, the couple in direction 2 and the normal load, respectively,
which are distributed on the free edge (an). Displacements w, vy, and
wo are not prescribed on the free edge (I'y,,). The general function
from Eq. (3) to be minimized with the calculus of variations is
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The minimization of Eq. (4) leads to the following equations, i.e.,
Euler equations [40,41]:
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The equilibrium equations obtained from Egs. (5) and (6) after
using the constitutive equations are
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The natural conditions introduce requirements on the free edge
(T'np), which is the boundary portion without the prescribed displace-

ments. The variations on displacements are not null on I'y, (i.e., 6w #
0 and Sy, # 0) and yields
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