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a b s t r a c t 

The buckling parameter is a non-dimensional value that typically represents the type of plate boundary condition (e.g., clamped edge, free edge) and is obtained 

from the critical load and geometrical data. This study investigates the variations in the buckling parameter based on plate slenderness considering the effect of 

shear deformation in the bending model used for buckling analyses. An alternative boundary element formulation using two integrals containing the geometrical 

non-linearity (GNL) effect, with one computed on the domain and the other computed on the boundary, is employed. The kernels of integrals related to the GNL effect 

contain the first derivatives of deflection instead of the second derivatives, and no relation is required for the derivatives of the in-plane forces. This formulation 

improves the numerical model for free edges or symmetry conditions corresponding to the relationship of one of the natural conditions of the buckling problem to 

the boundary integral containing the GNL effect. The values obtained for the buckling parameters in plates containing or not containing a hole are compared with 

the expected values from the literature. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The present boundary element formulation for plate-buckling 

analyses considers the shear deformation effect to improve the bending 

model accuracy, as shown by Reissner for the assessment of stress 

concentration around holes [1] and by Mindlin for wave propagation 

analyses considering short wavelengths [2] . The geometric non-linearity 

(GNL) effect is considered according to the development presented 

by Timoshenko and Woinowsky-Krieger [3] . Although classical plate 

theory was used in [3] , several studies in the literature have adopted 

this formulation in buckling analyses for thin or moderately thick plates 

considering the effect of shear deformation. 

Jones presented a literature review up to 1989 on the buckling of 

thin rectangular plates in [4] . Dawe and Roufaeil [5] discussed the GNL 

effect in the bending of plates while considering the effect of shear defor- 

mation based on the first study presented by Hermann and Armenakas 

[6] , and they stressed the importance of introducing the derivatives of 

rotations beyond the derivatives of deflections in the potential energy 

density associated with in-plane forces. Mizusawa [7] showed that the 

effect of the derivatives of rotations is greater for certain types of bound- 

ary conditions, whereas they are not significant in others for which the 

derivatives of deflection were sufficient. Smith [8] proposed a finite el- 

ement formulation including both derivatives on displacements in the 

buckling of thick plates. Doong [9] and Matsunaga [10] studied im- 

provements to the model representing the effect of shear deformation in 

plate bending, where the buckling analyses considered the derivatives of 

rotations and deflections combined with a high-order theory represent- 
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ing the effect of shear deformation. Nevertheless, several studies, e.g., 

Shufrin and Eisenberg [11] and Kitipornchai and Xiang [12] , employed 

only derivatives of the deflection including or not including the high- 

order theory to consider the effect of shear deformation. Srinivast and 

Rao [13] employed three-dimensional elasticity theory to perform vi- 

bration and buckling analyses of thick orthotropic plates and laminates. 

Levy et al. [14] studied the instability of perforated plates with a 

central hole. Schlack and Alois [15] computed the critical edge displace- 

ment of a simply supported pierced plate under uniform edge displace- 

ment. Yang [16] showed that the critical plate load is reduced when a 

square hole is considered instead of a circular hole. Brown and Yettram 

[17] illustrated the changes in the value of the buckling parameter for 

different load combinations according to the ratio between the diameter 

of the hole and the plate side. Shakerley and Brown [18] studied plate 

buckling with eccentrically positioned holes. El-Sawy and Nazmy 

[19] used the finite element method to assess the buckling parameter 

value for uniaxial loaded plates according to the ratio between the 

diameter of the hole and the plate side. Komur and Sonmez [20] studied 

the buckling of perforated plates with a circular hole under linearly 

varying in-plane load. Maiorana et al. [21] presented a buckling anal- 

ysis of perforated plates under concentrated in-plane loads. Nejad and 

Shanmugam [22] presented a buckling analysis of uniaxial loaded per- 

forated skew plates. Jayashankarbabu and Karisiddappa [23] presented 

the buckling of perforated plates considering the shear deformation 

effect instead of the classical plate theory used in studies [14 –22] . 

Several boundary element formulations presented in the literature 

performed buckling analyses with the classical theory or Reissner- 

Mindlin models. Bezine et al. [24] presented plate-buckling analyses 

https://doi.org/10.1016/j.enganabound.2017.09.008 

Received 23 January 2017; Received in revised form 6 July 2017; Accepted 22 September 2017 

0955-7997/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.enganabound.2017.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2017.09.008&domain=pdf
mailto:leandro@fec.unicamp.br
https://doi.org/10.1016/j.enganabound.2017.09.008


R.A. Soares Jr., L. Palermo Jr. Engineering Analysis with Boundary Elements 85 (2017) 57–69 

using the classical theory with the domain integral introducing the GNL 

effect. Liu [25] used the classical theory for the buckling analysis of 

circular plates and employed deflections instead of the derivatives of 

deflections in the domain integral related to the GNL effect. Manolis 

et al. [26] presented a fundamental solution that included the effect 

of the uniform in-plane force on the domain to eliminate the domain 

integral related to the GNL effect in buckling analyses with the classical 

theory. Tanaka and Miyazaky [27] presented a boundary element 

formulation to perform buckling analyses of assembled plates using 

the classical theory and employed domain integrals for the GNL effect. 

Elzein and Syngellakis [28] employed the dual reciprocity method 

(DRM) for the GNL effect in buckling analyses with the classical theory. 

Nerantzaki and Katsikadelis [29] studied plate buckling considering 

variable plate thickness according to the classical theory with a 

BEM-based method named the analog equation method. Lei et al. 

[30] formulated an integral equation for the geometrically nonlinear 

behavior of Reissner plates, where the domain integral for the GNL 

effect was discretized into constant triangular cells. Marczak [31] em- 

ployed constant rectangular cells in the domain integral discretization 

for the GNL effect for buckling analyses using the Reissner model. 

The buckling analyses using the Reissner model in Purbolaksono and 

Aliabadi [32] presented a comparison of the results obtained with the 

DRM versus domain integrations to account for the GNL effect. Doval 

et al. [33] employed the radial integration method (RIM) for integrals 

related to the GNL effect in the analysis of composite laminate plates 

under non-uniform stress fields using the classical theory. Chang-Jun 

and Rong [34] performed buckling and post-buckling analyses of 

perforated plates with the BEM using the classical plate theory. 

The alternative boundary element formulation in this study em- 

ploys two integrals containing the GNL effect, with one computed 

on the domain and the other computed on the boundary. The first 

derivatives of deflection were used in kernels of integrals related to 

the GNL effect instead of the second derivatives; no relation is required 

for the derivatives of in-plane forces. This formulation improves the 

numerical modeling to treat the free edges or symmetry conditions 

corresponding to the relationship between one of the natural conditions 

of the buckling problem to the boundary integral containing the GNL 

effect. The critical loads were obtained with this formulation using an 

elastodynamic fundamental solution derived from [37] in problems 

with in-plane forces assumed to be invariant with time and deflection 

derivatives dependent of the harmonic solution [35,36] . The changes in 

value of the buckling parameter according to the plate thickness of non- 

perforated plates were presented in [38] for certain types of boundary 

conditions with the static fundamental solution [39] . The numerical 

implementation employed quadratic shape functions to approximate 

displacements, plate-rotations, distributed shears and moments in the 

boundary elements; however, constant elements were used to discretize 

both integrals related to the GNL effect. Constant elements were the 

lower type of element used to evaluate the behavior of this formulation. 

An algebraic manipulation using both integrals with the GNL effect 

corresponds to performing integrations only on the sides of cells inside 

the domain in problems with no free edges. The inverse iteration and 

Rayleigh quotient were used to compute the lowest eigenvalue with 

the corresponding eigenvector. The values obtained for the buckling 

parameters in plates containing or not containing a hole are compared 

with the expected values from the literature. 

2. Natural conditions and boundary integral equations 

The constitutive equations for an isotropic and homogeneous plate 

material are 

𝑀 𝛼𝛽 = 𝐷 
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The plate has a uniform thickness h, D is the flexural rigidity, 𝜈 is 

Poisson’s ratio, w is the deflection, 𝜓 𝛼 is the plate rotation in direction 𝛼

and 𝛿𝛼𝛽 is the Kronecker delta. The product qRE in Eq. (1) corresponds 

to the linearly weighted average effect of the normal stress component 

in the thickness direction and should be considered in Reissner’s model 

[1] but not in Mindlin’s model [2] , in which it should be considered 

null. The shear parameter 𝜅2 is equal to 5/6 and 𝜋2 /12 for the Reissner 

and Mindlin models, respectively. Eqs. (1) and (2) employ a unified 

notation for the Reissner and Mindlin models and are written in the 

convention adopted in this study, i.e., Latin indices take on values {1, 

2 and 3} and Greek indices take on values {1, 2}. 

The natural conditions and equilibrium equations can be obtained 

using the calculus of variations [40,41] . The energy functional of the 

plate under static loads is given by 

Π = ∫Ω
{ 

𝐷 ( 1 − 𝜈) 
4 

[ 
𝜓 𝛼,𝛽

2 + 𝜓 𝛼,𝛽𝜓 𝛽,𝛼 + 

2 𝜈
( 1 − 𝜈) 

𝜓 𝛾,𝛾
2 + 𝜆2 

(
𝜓 𝛼 + 𝑤 ,𝛼

)2 ] } 

𝑑Ω

+ ⋯ − ∫Ω 𝑞𝑤𝑑Ω − ∫Γ𝑛𝑝 
(
𝐸𝑄𝑤 + 𝐸 𝑀 𝛼𝜓 𝛼

)
𝑑Γ

− ∫Ω
1 
2 
(
𝑁 𝛼𝛽𝑤 ,𝛼𝑤 ,𝛽

)
𝑑Ω (3) 

Eq. (3) represents the energy functional of the plate in the complete 

form, which is similar to that presented in [12] . The first integral (do- 

main integral) is the strain energy, and the last integral is the potential 

energy due to in-plane compression forces. The second and third inte- 

grals are the potential energy due to out-of-plane loads: q is the normal 

load distributed on the domain, and EM 1 , EM 2 and EQ are the couple in 

direction 1, the couple in direction 2 and the normal load, respectively, 

which are distributed on the free edge ( Γnp ). Displacements w, 𝜓 1 , and 

𝜓 2 are not prescribed on the free edge ( Γnp ,). The general function 

from Eq. (3) to be minimized with the calculus of variations is 

Π = ∫Ω 𝐹 
(
𝑤, 𝜓 1 , 𝜓 2 , 𝑤 , 1 , 𝜓 1 , 1 , 𝜓 2 , 1 , 𝑤 , 2 , 𝜓 1 , 2 , 𝜓 2 , 2 

)
𝑑Ω (4) 

The minimization of Eq. (4) leads to the following equations, i.e., 

Euler equations [40,41] : 
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The equilibrium equations obtained from Eqs. (5) and (6) after 

using the constitutive equations are 

𝑀 𝛼𝛽,𝛽 − 𝑄 𝛼 = 0 (7) 
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The natural conditions introduce requirements on the free edge 

( Γnp ), which is the boundary portion without the prescribed displace- 

ments. The variations on displacements are not null on Γnp (i.e., 𝛿w ≠
0 and 𝛿𝜓 𝛼 ≠ 0) and yields ( 
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