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a b s t r a c t 

A new domain decomposition method (DDM) is proposed to solve the electromagnetic scattering from microstrip 

antennas and arrays conformally mounted on a perfect electrically conducting (PEC) platform. Based on the lo- 

cal geometrical structures and material properties, the complex composite structures is first decomposed into 

independent sub-domains, following the philosophy of divide and conquer . The combined field integral equation 

(CFIE), the electric field integral equation (EFIE), and the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) 

formulation are then combined seamlessly in the framework of DDM. These equations are applied for different 

sub-domains: CFIE is used for the platform (closed PEC) sub-domains and EFIE–PMCHWT is employed for the 

microstrip (composite structure with dielectric substrate and open PEC sheet) sub-domains. To ensure the continu- 

ities of fields, the transmission conditions (TCs) are applied on the touching-faces. Compared with the traditional 

method, the newly developed DDM not only releases the burden of geometry preparation, but also results in a 

better conditioned matrix. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The microstrip structure is defined as open metallic sheets attached 

to grounded dielectric substrates. It is widely used in a lot of electro- 

magnetic (EM) problems due to its attractive features such as low pro- 

file, light weight and ease of conformity to a platform. Examples in- 

clude: microstrip antennas mounted on a large platform (e.g. aircraft), 

frequency selective surfaces (FSS) [1] loaded with dielectric structures, 

etc. Numerical analysis with high accuracy is of great importance to un- 

derstand the EM property of the microstrip structure. As an effective 

full-wave method, the method of moment (MoM) based on surface inte- 

gral equation (SIE) plays an important role in the EM design and analysis 

procedures [3–5] . Different from the finite element method (FEM) [2] , 

finite-difference time-domain (FDTD) method [6,7] , and volume inte- 

gral equation (VIE) method [8,9] , SIE-based MoM [10] only requires a 

two-dimensional surface discretization, instead of a three-dimensional 

volumetric discretization. Therefore, SIE-based MoM is very appealing 

for modeling piecewise homogeneous or composite objects. 

When the traditional SIE is used for the microstrip structure, a spe- 

cial procedure of junction testing is usually required [11] . This junction 

testing can enforce the boundary condition on the interface between 

different materials. Unfortunately, the implementation of this testing 
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is quite involved, especially for complex composite structures. In or- 

der to avoid the junction testing, the connect-region modeling (CRM) 

method [12] was proposed to enforce the boundary conditions auto- 

matically. However, CRM relies on conformal meshes on interfaces to 

ensure the boundary condition. To overcome this difficulty, the non- 

conformal, non-overlapping domain decomposition method (DDM) can 

be applied as an alternative solution. The non-conformal property of 

DDM [13] greatly releases the burden of mesh generation. At the same 

time, the convergence property of the DDM system is much better than 

that of CRM. 

Originally, the non-overlapping DDM was proposed in the FEM [14] , 

then it was extended to integral equatoin (IE) based method to solve the 

multi-scale EM scattering from non-penetrable objects [15–18] . It was 

then extended for dielectric objects, material coating, and composite 

structures [19–21] . Recently, the idea of EFIE–PMCHWT [22] has 

been successfully applied to DDM (named as EFIE–PMCHWT–DDM) in 

[23] to model a single microstrip with multiple layers of substrates. In 

this paper, we extend the previous work to model a microstrip mounted 

on a large platform, which is usually the case for real engineering prob- 

lems. Based on the idea of divide and conquer , this complex structure 

can be decomposed into micirostrip sub-domains and the platform (usu- 

ally non-penetrable with closed surface) sub-domains. Consequently, 
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Fig. 1. EM scattering from an closed/open composite dielectric/metallic object illumi- 

nated by a plane wave. 

EFIE–PMCHWT and CFIE can be used in the microstrip sub-domains and 

non-penetrable platform sub-domains, respectively. In the following 

discussion, the new DDM will be named as the hybrid surface integral 

equations domain decomposition method (HSIE–DDM). Compared with 

the traditional method such as CRM, the newly developed HSIE–DDM 

significantly improves the convergence of the iterative solution, and 

hence drastically reduces the computation time. More importantly, 

because the microstrip sub-domains and the platform sub-domains can 

be modeled independently with non-conformal meshes, the geometrical 

preparation can be much simplified. 

The rest of the paper is organized as follows. In Section 2 , the detailed 

derivation and Galerkin test procedure of the HSIE–DDM are derived. 

In Section 3 , three examples are presented to validate the accuracy and 

demonstrate the capability of HSIE–DDM. Conclusions are summarized 

in Section 4 . 

2. Formulations and equations 

Consider the electromagnetic (EM) scattering problem as shown in 

Fig. 1 , where a composite object Ω = Ω1 ∪ Ω2 is illuminated by an inci- 

dent plane wave. The Ω1 is PEC object and the Ω2 is a composite object. 

The 𝜕Ω1 and 𝜕Ω2 are the surface of Ω1 and Ω2 . The Γ𝑚 and Γ+ 
𝑚 
, 𝑚 = 1 , 2 

are the exterior face and touching face of Ω𝑚 , 𝑚 = 1 , 2 . They have this 

relationship, 𝜕 Ω1 = Γ1 ∪ Γ+ 1 , 𝜕 Ω2 = Γ2 ∪ Γ+ 2 . The Ω2 is the simplification 

of a typical microstrip structure. The red thick line is open metallic sur- 

face printed on the surface of homogeneous dielectric object. The 𝜀 r 2 , 

𝜇r 2 are relative permeability and permittivity of the sub-region Ω2 . The 

exterior surface can be further decomposed into two parts and they sat- 

isfy Γ2 = Γ𝑑2 ∪ Γ𝑐2 . The Γ𝑑2 , Γ𝑐2 stand for the surface of dielectric and 

metallic, respectively. As shown in Fig. 2 , the original object can be 

decomposed into two independent sub-domains. 

The 𝐉 𝑜 
𝑐1 is the current of the first sub-domain. The 𝐉 𝑜 

𝑑2 , 𝐌 

𝑜 
𝑑2 are the 

electric and magnetic currents of dielectric surface of Ω2 , The 𝐉 𝑜 
𝑐2 , − 𝐉 𝑖 

𝑐2 , 

are the equivalent electric currents on the exterior and interior surface 

of Γ𝑐2 . 
The combined field integral equation (CFIE) is chosen as the govern- 

ing equation of sub-domain Ω1 , and the EFIE–PMCHWT is taken as the 

governing equation of sub-domain Ω2 . 

When the field point 𝐫 ∈ Γ1 , the combined field integral equation is 

expressed as, 

𝛽𝜂0 𝐉 𝑐1 ( 𝐫) −  𝛼,𝛽(𝐉 𝑐1 , 𝜕Ω1 
)
( 𝐫 ) = 𝛼𝐄 

𝑖𝑛𝑐 ( 𝐫) + 𝛽𝜂0 ̂𝐧 ×𝐇 

𝑖𝑛𝑐 ( 𝐫) 

+  𝛼,𝛽 ( 𝐉 2 ; 𝜕Ω2 ) + ̂𝐧 2 ×  𝛽,𝛼( 𝐌 𝑑2 ; 𝜕Ω2 ⧵ Γ𝑐2 ) , 𝐫 ∈ Γ1 (1) 

Fig. 2. The notation of the original complex composite object as shown in Fig. 1 . 

The detailed definition of the  𝛼,𝛽 is in the appendix, and the 𝛼, 𝛽 is set 

as 𝛼 = 𝛽 = 0 . 5 . 
When the field point 𝐫 ∈ Γ+ 1 , the TCs are enforced directly to ensure 

the continuities of fields. 

𝐉 Γ+ 1 ( 𝐫) = − 𝐉 Γ+ 
𝑑2 
( 𝐫) + ̂𝐧 2 ( 𝐫) ×𝐌 Γ+ 

𝑑2 
( 𝐫) , 𝐫 ∈ Γ+ 1 (2) 

When the field point 𝐫 ∈ Γ2 , the EFIE and MFIE in the exterior region 

can be expressed as, ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝐧̂ 2 ( 𝐫) ×𝐌 2 ( 𝐫) − 𝐄 

𝑠𝑐𝑎 ( 𝐫; 𝜕Ω2 ) = 𝐄 

𝑖𝑛𝑐 ( 𝐫) 
+ 𝐄 

𝑠𝑐𝑎 ( 𝐫; 𝜕Ω1 ) 
𝐉 2 ( 𝐫) × 𝐧̂ 2 ( 𝐫) − 𝐇 

𝑠𝑐𝑎 ( 𝐫; 𝜕Ω2 ) = 𝐇 

𝑖𝑛𝑐 ( 𝐫) 
+ 𝐇 

𝑠𝑐𝑎 ( 𝐫; 𝜕Ω1 ) 

, 𝐫 ∈ Γ2 (3) 

Further more, The EFIE and MFIE can be detailed expressed as, 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

− 𝜂0  0 
(
𝐉 𝑜 2 ; 𝜕Ω2 

)
− 

𝜂0 
2 𝐌 

𝑜 
𝑑2 ( 𝐫) × 𝐧̂ 2 ( 𝐫) 

+ 𝜂0  0 ( 𝐌 

𝑜 
𝑑2 ; 𝜕Ω2 ⧵ Γ+ 𝑐2 ) = 𝐄 

𝑖𝑛𝑐 ( 𝐫) + 𝜂0  0 
(
𝐉 𝑜 1 ; 𝜕Ω1 

)
− 𝜂0  0 

(
𝐉 𝑜 2 ; 𝜕Ω2 

)
− 

𝜂0 
2 𝐧̂ 2 ( 𝐫) × 𝐉 𝑜 2 ( 𝐫) 

− 𝜂0  0 ( 𝐌 

𝑜 
𝑑2 ; 𝜕Ω2 ⧵ Γ+ 𝑐2 ) = 𝜂0 𝐇 

𝑖𝑛𝑐 ( 𝐫) + 𝜂0  0 
(
𝐉 𝑜 1 ; 𝜕Ω1 

)
, 𝐫 ∈ Γ2 (4) 

When the field point 𝐫 ∈ Γ+ 2 , The TCs can be defined in the following. { 

𝐉 Γ+ 
𝑑2 
( 𝐫) + ̂𝐧 2 ( 𝐫) ×𝐌 Γ+ 

𝑑2 
( 𝐫) = − 𝐉 Γ+ 1 ( 𝐫) 

− ̂𝐧 2 ( 𝐫) × 𝐉 Γ+ 
𝑑2 
( 𝐫) + 𝐌 Γ+ 

𝑑2 
( 𝐫) = − ̂𝐧 1 ( 𝐫) × 𝐉 Γ+ 1 ( 𝐫) 

, 𝐫 ∈ Γ+ 2 (5) 

When the field point r ∈ 𝜕Ω2 , the EFIE and MFIE in the interior region 

can be expressed as, ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝜂0 
2 𝐌 

𝑜 
𝑑2 ( 𝐫) × 𝐧̂ 2 ( 𝐫) − 𝜂2  2 ( 𝐉 𝑜 𝑑2 + 𝐉 𝑖 

𝑐2 ; 𝜕Ω2 ) 

+ 𝜂0  2 ( 𝐌 

𝑜 
𝑑2 ; 𝜕Ω2 ⧵ Γ+ 𝑐2 ) = 0 

𝜂0 
2 𝐧̂ 2 ( 𝐫) × 𝐉 𝑜 

𝑑2 ( 𝐫) − 𝜂0  2 ( 𝐉 𝑜 𝑑2 + 𝐉 𝑖 
𝑐2 ; 𝜕Ω2 ) 

− 

𝜂0 
𝜂2 
 2 ( 𝐌 

𝑜 
𝑑2 ; 𝜕Ω2 ⧵ Γ+ 𝑐2 ) = 0 

, 𝐫 ∈ 𝜕Ω1 ⧵ Γ+ 𝑐2 (6) 

− 𝜂1  2 ( 𝐉 𝑜 𝑑2 + 𝐉 𝑖 
𝑐2 ; 𝜕Ω2 ) + 𝜂0  2 ( 𝐌 

𝑜 
𝑑2 ; 𝜕Ω2 ⧵ Γ+ 𝑐2 ) = 0 , 𝐫 ∈ Γ+ 

𝑐2 (7) 

make a weighted linear combination of (1) and (2) and (4) –(7) , namely 

{(1) + 

𝜂0 
2 (2)} + {4) + 

𝜂0 
2 (5) + (6) + (7)} . Applying the Galerkin method to 

discrete and test this linear combination, the Eq. (8) can be got. [ 
𝐀 11 𝐂 12 
𝐂 21 𝐀 22 

] 
⋅
[ 
𝐗 1 
𝐗 2 

] 
= 

[ 
𝐕 1 
𝐕 2 

] 
(8) 

where 

𝐀 22 = 𝐀 

𝑖 
22 + 𝐀 

𝑜 
22 (9) 

𝐗 2 = 

[
𝐉 𝑑2 , 𝐌 𝑑2 , 𝐉 𝑐2 , 𝐉 𝑖 𝑐2 

]
(10) 
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