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a b s t r a c t

A stable node-based smoothed finite element method (SNS-FEM) is presented that cures the “overly-soft”
property of the original node-based smoothed finite element method for the analysis of underwater
acoustic scattering problems. In the SNS-FEM model, the node-based smoothed gradient field is en-
hanced by additional stabilization term related to the gradient variance items. It is demonstrated that
SNS-FEM provides an ideal stiffness of the continuous system and improves the performance of the NS-
FEM and FEM. In order to handle the acoustic scattering problems in unbounded domain, the well known
Dirichlet-to-Neumann (DtN) boundary condition is combined with the present SNS-FEM to give a SNS-
FEM-DtN model for exterior acoustic problems. Several numerical examples are investigated and the
results show that the SNS-FEM-DtN model can achieve more accurate solutions compared to the NS-FEM
and FEM.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic scattering from objects is an interesting physical phe-
nomena and it is of great importance in various practical application
such as underwater acoustics, exploration engineering, non-de-
structive testing and particle manipulation. During the past few
decades, a great number of researches have been conducted re-
garding this problem. Initial works are mainly focused on the objects
with particular geometry where separation of variables is applicable.
For example, the exact solutions have been obtained for rigid or
elastic spherical solids and shells [1–4], infinite cylinders [1], and
spheroids [5,6]. Subsequently, there is a variety of new methods have
been developed to solve the acoustic scattering problems. These
methods include the perturbation method [7], the Green's function
method [8], the T-matrix method [9], the Fourier matching method
(FMM) based on conformal mapping [10], the boundary integral
equations [11] and the partial wave series expansions (PWSE)
method [12–15]. However, each of these methods has their own
associated advantages, disadvantages and conditions of applicability.

Currently, with the fast development of the computer simula-
tion techniques, the standard finite element method (FEM) and

boundary element method (BEM) have been the two most popular
and powerful numerical methods in coping with the time-har-
monic acoustic scattering problems. The classical BEM can be
classified as a boundary discretization method and the main ad-
vantage of this method is that only boundary discretization is re-
quired. In addition, the BEM can naturally satisfy the required
Sommerfeld radiation condition at infinity, while some special
treatments are needed when the FEM is used. However, the re-
sulting system equations of BEM are usually non-symmetric and
dense, which is opposed to symmetric and banded in FEM. This
may increase the processing time and storage requirements. Be-
sides, the potential non-uniqueness of the BEM solution at char-
acteristic wave number values is also an important issue. In the
contrast to BEM, the FEM, which are based on variational for-
mulations, has a rich mathematical background and the con-
vergence of FEM to the exact solution is well-proved. There is no
theoretical limitation on the applicability of FEM to high wave
numbers as long as the sufficient refined mesh is used. Recently a
meshless boundary collocation method, the singular boundary
method (SBM), has been proposed for exterior acoustic problems
[16–18]. In SBM, the concept of source intensity factor is in-
troduced to regularize the singularities of fundamental solutions.
It successfully overcomes some shortcomings of the original BEM
and can be a good alternative for exterior acoustic problems.
However, the mathematical theoretical analysis of the SBM seems
to be not as complete as the FEM and the relevant work is still on
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its way. In the author's opinion, there is no ideal method has been
found yet and the quest for such a method will continue.

In fact, the standard FEM for handling the acoustic scattering
still remains two major challenges. The first challenge is how to
treat the exterior acoustic problems in unbounded domains ef-
fectively. As is known to all, FEM has been well developed for
acoustic problems in bounded domains. In general, the application
of FEM to unbounded domains involves a domain decomposition
by introducing an artificial boundary around the objects. At the
artificial boundary, the well-known Sommerfeld radiation condi-
tion should be satisfied so that there is no spurious wave reflected
from the far field. There are various approaches can be combined
with the FEM for the analysis of acoustic scattering in unbounded
exterior domains, such as the Dirichlet-to-Neumann (DtN) map
developed by Keller and Givoli [19], the recursion in the Atkinson-
Wilcox expansion devised by Bayliss et al. [20], and the recent
perfectly matched layer approach proposed by Bérenger et al. [21–
23]. Among them, the DtN boundary condition devised by Givoli
and Keller is an exact non-reflecting boundary condition. It relates
the “Dirichlet datum” to the “Neumann datum” with the help of an
integral operator M. Although this boundary condition is non-lo-
cal, it still possesses high computational efficiency and can obtain
much more accurate results than those obtained from various
approximate local conditions. Therefore, the DtN boundary con-
dition is chosen to cope with the exterior acoustic problems in this
paper.

Second, when using the standard FEM for the solution of
acoustic problems addressed by Helmholtz equation, one soon is
confronted with the well-known dispersion error issue. More
importantly, the larger wave number k is, the stronger dispersion
error will be. Therefore, the standard FEM can only provide reli-
able numerical results in the small wave number range, when it
comes to large wave number range, the FEM solutions will dete-
riorate quickly due to the dispersion error issue. Initial FEM re-
searchers used the “rule of thumb” to obtain relatively reliable
solutions. In this criterion, a certain fixed number of elements are
needed to resolve a wavelength. However, this criterion only
works well in the small wave number range. With the increase of
the wave number, the numerical dispersion error will increase
dramatically even if this criterion is satisfied. In order to deal with
this dispersion error effectively, a great number of numerical
techniques have been tested with varying degree of success.

Based on the standard Galerkin FEM, the Galerkin/least-squares
finite element method (GLS) are proposed to tackle the dispersion
error issue [24–26]. In the GLS model, the residuals in least-
squares form are added to the standard Galerkin variational
equation. The numerical results show that the GLS exhibits su-
perior properties for acoustic problems and provides accurate
solutions with relatively low dispersion error. Babuška and his
colleagues developed a quasi-stabilized FEM (QSFEM) to solve the
Helmholtz equations in two or more space dimensions [27,28]. It
is demonstrated that the dispersion error can be controlled by the
QSFEM. However, the QSFEM model is very complicated in the
general setting. Also based on the standard Galerkin FEM, Franca
et al. proposed the residual-free-bubbles (RFB) method for
Helmholtz equation [29]. Unfortunately, it is found that the RFB is
effective in one dimensions but not in higher dimensions. Fur-
thermore, the high-order finite element method has also been
applied for acoustic problems [30] and significant improvements
on accuracy are achieved, but higher cost in computation. In ad-
dition to the standard finite element method and the extended
finite element method mentioned above, the meshfree methods
have also been introduced to solve the acoustic problems, such as
the element-free Galerkin method (EFGM) [31,32], the multi-
resolution reproducing kernel particle method (RKPM) [33], the
radial point interpolation method (RPIM) [34] and the meshless

Galerkin least-square method (MGLS) [35]. Although the calcula-
tion accuracy can be improved to a certain extent with these
methods, the dispersion error in general two and three dimen-
sional acoustic problems still cannot be properly eliminated.

As mentioned in reference [36], the approximate discrete
model may be the main reason to cause dispersion error. The
stiffness of the discretized model obtained from the standard FEM
always behaves stiffer than the original model, leading to the so-
called numerical dispersion error. So producing a properly “sof-
tened” stiffness for the discrete model is much more essential to
control the numerical error. Recently, Liu et al. have proposed a
series of smoothed finite element methods (S-FEM) which are
formulated by incorporating the gradient smoothing techniques of
meshfree methods into the existing standard FEM [37–40]. The
S-FEMs have been applied to analyze linear elastic solid mechanics
and it is found that S-FEMs possess excellent features. Recently,
the S-FEMs have been successfully applied to solve acoustic and
coupled structural-acoustic problems [41–45]. In the S-FEM family,
the node-based smoothed finite element method (NS-FEM) is
formulated by performing the gradient smoothing technique over
the smoothing domains associated with nodes [46–48]. The nu-
merical results demonstrate that the NS-FEM can provide an upper
bound in the strain energy of the exact solution when a reasonably
fine mesh is used. However, NS-FEM is temporally instable and
cannot be applied to solve the dynamic problems and acoustic
problems directly due to its “overly-soft” property. In order to
overcome the temporal instability of the NS-FEM, Cui et al. have
proposed the stable node-based smoothed finite element method
(SNS-FEM) for elasticity problems and acoustic problems [49,50].
In the SNS-FEM, a extra gradient variance item is added to the
smoothed gradient field. It is found that SNS-FEM possesses an
ideal stiffness of the continuous system and improves the perfor-
mance of the NS-FEM and FEM. In the present research, the SNS-
FEM is used to solve the underwater acoustic scattering problems
which are very important in various scientific fields such as linear
and nonlinear wave mechanics, underwater technology and ocean
acoustics. In this paper, the SNS-FEM is combined with the DtN
boundary condition to give a SNS-FEM-DtN model for acoustic
scattering problems. Due to the good performance of the SNS-FEM
in interior acoustic problems and elasticity problems, it is expected
that the SNS-FEM can solve the acoustic scattering problems with
very exact solutions.

2. The exterior boundary value problem for the Helmholtz
equation

Consider an infinite acoustic problem domain with homo-
geneous isotropic medium. The acoustic wave satisfies the fol-
lowing reduced wave equation (or the Helmholtz equation).

Δ + = ( )p k p f 12

where p is the acoustic pressure, k is the wave number, Δ is the
Laplace operator and f is the acoustic source term.

Assuming that the surface of the obstacle immersed in the
unbounded domain can be decomposed into Dirichlet boundary
condition Γp and Neumann boundary condition Γv, where
Γ Γ∩ = ∅p v . The Dirichlet boundary condition and Neumann
boundary condition can be described as follows:

Γ= ( )p p on 2D p

ρω Γ∇ ⋅ = − ( )p n j v on 3n v

where = −j 1 , ρ is the density of the medium, ω is the angular
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