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a b s t r a c t

In this paper, we implement the radial basis functions for solving a classical type of time-fractional
telegraph equation defined by Caputo sense for ð1oαr2Þ. The presented method which is coupled of
the radial basis functions and finite difference scheme achieves the semi-discrete solution. We
investigate the stability, convergence and theoretical analysis of the scheme which verify the validity
of the proposed method. Numerical results show the simplicity and accuracy of the presented method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years fractional calculus has been implemented to
describe some phenomena in physics and engineering. Also,
fractional integral and derivative have been successful to describe
many events in fluid mechanics, viscoelasticity, chemical physics,
electricity, finance, control theory, biomedical engineering, heat
conduction, diffusion problems and other sciences [13,22,25,28].
Fractional partial differential equations (FPDEs), particularly space-
and time-fractional equations, have been widely studied to con-
struct the existence of solution and validity of these problems
[15,34,31,36]. In addition, finding the reliable and powerful
numerical and analytical methods for solving FPDEs has been
focused in the last two decades. According to the mathematical
literature, fractional partial differential equations have been pro-
gressed in various problems in science and engineering such
as the Schröinger, diffusion and telegraph fractional equations
[4,14,15,17,23,35].

After the appearance of the remarkable work due to Orsinger
and Zhao by using the Fourier technique [26], the fractional
telegraph equation has been solved in several ways including
Adomian decomposition method (ADM) [24], He's variational
iteration method [8], He's homotopy perturbation method (HPM)
[33], homotopy analysis method (HAM) [7] and other new meth-
ods [12].

In 2009, Wen et al. were the pioneers in using the Kansa
method for solving the fractional diffusion equation [5]. After that
the method was interested for solving the other fractional

[11,23,27]. In this study, we implement the meshless method for
solving the time-fractional telegraph equation by using a radial
basis function (RBF). The presented method is coupled of the radial
basis functions and finite difference scheme as is handled in
[1,2,5,9,10].

The paper is organized in the following way. In Section 2, the
Caputo fractional derivative and radial basis functions as the tools
for performing the proposed method are described. In Section 3,
firstly the discretization process of the problem in the t-direction
via the finite difference scheme is described. Also, we will explain
how to achieve the approximated solution by using the radial basis
functions. Error analysis, stability and convergence of proposed
method are discussed in Section 4. In Section 5, some numerical
examples are demonstrated which confirm the accuracy and
applicability of the method. The last section includes some other
features of the presented method, conclusion and further ideas for
future work.

2. Basic definitions

2.1. Fractional derivative

Definition. The Caputo fractional derivative operator of order
αZ0, of a function F(x) is defined as

Dα
n
FðxÞ ¼

1
Γðk�αÞ

R x
0 ðx�ξÞk�α�1F ðkÞðξÞ dξ; k�1oαok; x40;

F ðkÞðxÞ; α¼ k:

8><
>:

ð1Þ
More properties of the fractional Caputo derivative can be found in
[13,28]. Also, for further information about fractional calculus and
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another definitions of fractional derivatives, one can consult the
mentioned references.

2.2. Radial basis functions

Considering a finite set of interpolation points X ¼
fx1; x2;…; xNg �Rd and a function u : X-R, according to the
process of interpolation using radial basis functions [3], the
interpolant of u is constructed in the following form

ðSuÞðxÞ ¼ ∑
N

i ¼ 1
λiϕðJx�xi J ÞþpðxÞ; xARd ð2Þ

where J � J is the Euclidean norm and ϕðJ � J Þ is a radial function.
Also, pðxÞ is a linear combination of polynomials on Rd of total
degree at most m�1 as follows:

pðxÞ ¼ ∑
Nþ l

j ¼ Nþ1
λjqjðxÞ; l¼ mþd�1

d

� �
: ð3Þ

Moreover, the interpolant Su and additional conditions must be
determined to satisfy the system

ðSuÞðxiÞ ¼ uðxiÞ; i¼ 1;2;…;N;

∑
N

i ¼ 1
λiqjðxiÞ ¼ 0 for all qjAΠd

m�1;

8><
>: ð4Þ

where Πd
m�1 denotes the space of all polynomials on Rd of total

degree at mostm�1. Now we have a unique interpolant ðSuÞ of u if
ϕðrÞ is a conditionally positive definite radial basis function of
order m [21]. The interested reader can see [3,6,18–20,29]. We will
use the generalized thin plate splines (GTPS) which have the
following form:

ϕðJx�xi J Þ ¼ϕðriÞ ¼ r2mi log ðriÞ; i¼ 1;2;3;…; m¼ 1;2;3;…;

ð5Þ
where ri ¼ Jx�xi J . We note that ϕ in Eq. (5) is C2m�1 continuous.
Therefore, the higher order of partial differentials needs the higher
order of thin plate splines. As uðxÞ can be approximated by

uðxÞC ∑
xi AX

λiϕðJx�xi J ÞþpðxÞ; xARd; ð6Þ

for any partial differential operator L, Lu can be represented by

LuðxÞ ¼ ∑
xi AX

λiLϕðJx�xi J ÞþLpðxÞ; xARd: ð7Þ

The coefficients λi will be obtained by solving the system of linear
equations.

3. Description of the method

Consider the following time-fractional telegraph equation of
order αð1oαr2Þ:
∂αuðx; tÞ

∂tα
þγ1

∂α�1uðx; tÞ
∂tα�1 þγ2uðx; tÞ ¼ γ3

∂2uðx; tÞ
∂x2

þ f ðx; tÞ;
arxrb; 0rtrT ð8Þ
with the initial conditions

uðx;0Þ ¼ g1ðxÞ; arxrb ð9Þ

utðx;0Þ ¼ g2ðxÞ; arxrb; ð10Þ
and the boundary conditions

uða; tÞ ¼ h1ðtÞ; uðb; tÞ ¼ h2ðtÞ; tZ0; ð11Þ
where a;b;α, g1ðxÞ, g2ðxÞ, h1ðtÞ and h2ðtÞ are given and ∂αuðx; tÞ=∂tα
represents the Caputo fractional derivative. Also, γ1; γ2 and γ3 are
constant given the coefficients.

According to Eq. (1), ∂αuðx; tÞ=∂tα can be written as follows:

∂αuðx; tÞ
∂tα

¼

1
Γð2�αÞ

R t
0
∂2uðx; ξÞ

∂ξ2
ðt�ξÞ1�α dξ; 1oαo2;

∂2uðx; ξÞ
∂ξ2

; α¼ 2:

8>>>><
>>>>:

ð12Þ

and regarding ð0oα�1o1Þ, we have

∂α�1uðx; tÞ
∂tα�1 ¼

1
Γð2�αÞ

R t
0
∂uðx; ξÞ

∂ξ
ðt�ξÞ1�α dξ; 1oαo2;

∂uðx;ξÞ
∂ξ

; α¼ 2:

8>>><
>>>:

ð13Þ

In order to discretize the problem for ð1oαo2Þ in the time
direction, we substitute tnþ1 into Eqs. (12) and (13), then the
integrals can be partitioned as

∂αuðx; tnþ1Þ
∂tα

¼ 1
Γð2�αÞ

Z tnþ 1

0

∂2uðx; ξÞ
∂ξ2

ðtnþ1�ξÞ1�α dξ;

¼ 1
Γð2�αÞ ∑

n

k ¼ 0

Z tkþ 1

tk

∂2uðx; ξÞ
∂ξ2

ðtnþ1�ξÞ1�α dξ; ð14Þ

and

∂α�1uðx; tnþ1Þ
∂tα�1 ¼ 1

Γð2�αÞ
Z tnþ 1

0

∂uðx; ξÞ
∂ξ

ðtnþ1�ξÞ1�α dξ;

¼ 1
Γð2�αÞ ∑

n

k ¼ 0

Z tkþ 1

tk

∂uðx; ξÞ
∂ξ

ðtnþ1�ξÞ1�α dξ; ð15Þ

where t0 ¼ 0, tnþ1 ¼ tnþδt, n¼ 0;1;2;…;M. Also, n can be incr-
eased to the time length with δt as the time step which δtM¼ T .

Approximations of the first and second order derivatives due to
the forward finite difference formulae are defined as

∂2uðx; sÞ
∂t2

¼ uðx; tnþ1Þ�2uðx; tnÞþuðx; tn�1Þ
δt2

þoðδt2Þ; ð16Þ

∂uðx; sÞ
∂t

¼ uðx; tnþ1Þ�uðx; tnÞ
δt

þoðδtÞ; ð17Þ

where sA ½tn; tnþ1�. Replacement of Eqs. (16) and (17) into Eqs. (14)
and (15), respectively, gives

∂αuðx; tnþ1Þ
∂tα

¼ 1
Γð2�αÞ

Z tnþ 1

0

∂2uðx; ξÞ
∂ξ2

ðtnþ1�ξÞ1�α dξ;

¼ 1
Γð2�αÞ ∑

n

k ¼ 0

ukþ1�2ukþuk�1

δt2

�
Z tkþ 1

tk
ðtnþ1�ξÞα�1 dξ; ð18Þ

and

∂α�1uðx; tnþ1Þ
∂tα�1 ¼ 1

Γð2�αÞ
Z tnþ 1

0

∂uðx; ξÞ
∂ξ

ðtnþ1�ξÞ1�α dξ;

¼ 1
Γð2�αÞ ∑

n

k ¼ 0

ukþ1�uk

δt

Z tkþ 1

tk
ðtnþ1�ξÞ1�α dξ;

ð19Þ
where uk ¼ uðx; tkÞ, k¼ 0;1;…;M.

By considering tnþ1�ξ¼ r, the integral is easily obtained as

Z tkþ 1

tk
ðtnþ1�ξÞα�1 dξ¼ �1

ð2�αÞ r
2�α tn� k

tn� kþ 1

���
¼ 1

ð2�αÞ δt
2�α½ðn�kþ1Þ2�α�ðn�kÞ2�α�: ð20Þ
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