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a b s t r a c t

The paper is devoted to the solution of Laplace equation by the boundary element method. The coupling
between a finite element solution inside a bounded domain and a boundary integral formulation for an
exterior infinite domain can be performed by producing a “stiffness” or “impedance matrix”. It is shown
in a first step that the use of classical Green's functions for plane domains can lead to impedance matrices
which are not satisfying, being singular or not positive-definite. Avoiding the degenerate scale problem is
classically overcome by adding to Green's function a constant which is large compared to the size of the
domain. However, it is shown that this constant affects the solution of exterior problems in the case
of non-null resultant of the normal gradient at the boundary. It becomes therefore important to define
this constant related to a characteristic length introduced into Green's function. Using a “‘slender body
theory” allows to show that for long cylindrical domains with a given cross section, the characteristic
length is shown as being asymptotically equal to the length of the cylindrical domain. Comparing
numerical or analytical 3D and 2D solutions on circular cylindrical domains confirms this result for
circular cylinders.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The advantage of the boundary element method, compared to
other approximate solutions is the most obvious when the method
is used for problems on unbounded domains, either for solving
completely linear systems of partial differential equations or very
often as a complement of the finite element method in the case of
problems containing local non-linearities.

It is well known that, in the case of 2D problems, the
fundamental solution tends to infinity when the distance
between source and observation point tends to infinity, either
for the case of Laplace equation or for the elasticity operator. A
consequence is that if the resultant of sources is not null, the
solution does not vanish at infinity. A main point of interest in the
literature is the well-posedness of the exterior boundary value
problem. Due to the logarithmic behaviour of the fundamental
solution at infinity, the well-posedness has been studied primar-
ily in the case where the resultant of sources (or forces in
problems related to elasticity equations) on the finite boundary
is null [1–7]. However many practical problems need the

application of sources or forces whose resultant is non-null; this
case has been considered in [8,9]. The validness of the corre-
sponding integral equation has been proved in detail by [10] for
the standard integral equation using Somigliana equality (with a
new kernel) and by [11] for the regularized integral equation
without restriction on the kernel which is used. So, in this paper,
we shall assume that the consideration of an exterior problem by
standard BEM is licit even if the resultant of sources or forces
applied at the boundary is non-null.

A second difficulty related to 2D problems is the loss of
uniqueness of the solution when the domain under consideration
has specific dimensions and when the classical logarithmic function
for an infinite domain is used. It was early recognized [12] and the
usual practical way to circumvent this problem is to add a constant
to Green's functionwhich must be adjusted to the dimensions of the
domain [13,9]. This method leads however to the obtaining of the
potential up to an additional arbitrary constant value, this method
being related to a convenient “scaling” of the distances introduced
when using the fundamental solution [14]. Other methods are used
to perform a “regularization” of the problem and to recover the
uniqueness [15–20]. This problem is recurrent within the literature
[21,22,7,23,24]. The link between the condition number of the BEM
matrices and the scaling of the problem has been also investigated
[25]. Two points remain unclear in this context. First, it is clear that
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some constants added to the fundamental solution must be avoided,
leading to non-uniqueness of the solution. However, it is not always
clear if all other values can still be used. Indeed, it is practically
always considered that the constant is arbitrary and that all
solutions related to different values of the arbitrary constant are
the same, up to an additional constant. This paper addresses these
two points in the case of Laplace equation. The purpose of the
present paper is therefore

� to present in Section 2 an example where the use of the
classical singular solution for Laplace equation within the usual
formulation of the boundary integral equation leads to non-
physical solutions. The example recovers the loss of uniqueness
for some specific problems and shows that in addition to the
loss of uniqueness, some fundamental solutions can lead to a
loss of positiveness of the “impedance matrix” induced by the
boundary element formulation;

� to prove next that for interior problems any constant added to
the fundamental solution does not change the solution which
is given up to an added constant and that in the case of
exterior problems, solutions related to different constants
added to the fundamental solution are different for Dirichlet
or mixed value problems. Therefore, it is clearly of importance
to find the value of the “right” constant related to a given
physical problem or the right “characteristic length” asso-
ciated to this problem;

� to show in Section 3 by using the “slender body theory” that
the solution to a given 2D boundary value problem can be
obtained as the asymptotic limit of the solution to an associate
3D problem over a long cylinder as soon as the associated
“characteristic length” is equal to the length of the cylinder;

� to confirm in Section 6 the result of the “slender body theory”
by comparing the results coming from 3D problems over long
cylinders, these results being obtained by various analytical
(Section 4) or numerical (Section 5) solutions.

2. Discussion of the direct formulation of the boundary
element method in the case of the exterior problem for Laplace
equation

2.1. Example of loss of uniqueness and appearance of unphysical
results on a numerical solution built from the classical formulation of
the exterior problem

Our discussion will start with the classical formulation of the
exterior “Dirichlet” Boundary Value Problem. Let us therefore
consider the solution u of the exterior problem of Laplace equation
on a plane domain D having a boundary ∂D for Dirichlet boundary
conditions. The classical discretized integral equation writes (see
Appendix A)

½H�½u� ¼ ½G�½q� ð1Þ

where ½u� and ½q� contain the nodal displacements and the nodal
values of the normal flux, respectively, while ½H� and ½G� are built
from the interpolation functions, the geometry of the elements
and from Green's function (and its derivatives).

Green's function which is used at the beginning is the classical
expression for 2D problems given by

G¼ 1
2π

lnð1=rÞ ð2Þ

r being the distance between source and observation point.

The physical soundness of the results will be studied by using
the eigenvalues of

� the matrix ½G�,
� the symmetric part ½K� of the “impedance matrix” ½K1� (cf.

Appendix A) which allows the computation of the supply of
energy from

W ¼ 1
2 ½u�T ½F� ¼ 1

2 ½u�T ½K1�½u� ¼ 1
2 ½u�T ½K�½u� ð3Þ

where ½K1� is the “impedance matrix” which is built by using
matrices ½H� and ½G� as in [26]:

½K1� ¼ ½Q �½G��1½H� ð4Þ
where ½Q � is a matrix allowing the condensation of boundary
stresses on nodal forces.

It may be noticed that the “impedance matrix” ½K1� is in general
not symmetric, due to the fact that ½G� and ½H� are generally
themselves not symmetric. Let us consider a simple example
which is the problem exterior to a square having a side length
equal to 2, as shown in Fig. 1.

Table 1 displays the eigenvalues of matrix ½K�, showing that one
of these eigenvalues is negative, which is physically inconsistent,
because it implies a negative supply of energy for some boundary
conditions. Now, let us show that this situation is closely related to
the well-known problem of loss of uniqueness of the Dirichlet
problem which is mentioned in many papers. Indeed, Fig. 2

Fig. 1. The exterior 2D problem outside a square.

Table 1
Eigenvalues of the matrix ½K� when using the classical 2D Green's function for
Laplace equation in the domain of Fig. 1.

Eigenvalues of [K]
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Fig. 2. Smallest eigenvalue of matrix ½G� for different side-lengths.
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