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A B S T R A C T

The compatibility with complicated elastoplasticity and efficiency of the constitutive integration algorithm both
significantly influence the performance of finite element analysis for engineering practical problems. In this work,
a numerical integration algorithm in principal space is proposed for general isotropic elastoplastic constitutive
models that involve multi-surface plasticity with corners in the yield surface and combined isotropic-kinematic
hardening law as well as nonlinear elasticity within the framework of finite deformation. For the multi-surface
plasticity, a strategy, which uses the mid-direction of two plastic flow directions at a corner as the border of
critical regions, is proposed to predict the yield functions activated in the return mapping iterations, making the
prediction procedure simpler. By making use of the relative stress, the combined isotropic-kinematic hardening
law is incorporated into the numerical integration algorithm in principal space. The consistent tangent operator is
also derived. Besides, the fully implicit return mapping algorithm based on representation theorem is employed.
The expressions of the first and second derivatives of yield/potential function, which are frequently evaluated in
the algorithm, maintain a simple form and reduce the computational cost. Solution of finite element practical
problems demonstrates that compatibility and efficiency of the constitutive integration algorithm are improved
while accuracy is retained.

1. Introduction

The compatibility and efficiency of constitutive integration algorithm
in the finite element analysis are both important for scientific inquiry and
engineering practice [1,2]. In engineering practice, many materials, such
as concrete, soils and rocks, exhibit complex nonlinear mechanical be-
haviors, including porous elasticity, different yield strength in extension
and compression, pressure-sensitive yielding, the Bauschinger effect, etc.
To capture these behaviors, complicated elastoplastic constitutive
models are usually used, which often involve nonlinear elasticity,
multi-surface plasticity with corners/singularities in yield/potential
function [3–5] and combined isotropic-kinematic hardening law [6,7].
For isotropic materials, these constitutive models usually involve all the
three stress invariants in the yield/potential function [8–10]. Besides,
engineering materials often undergo very large deformation or large
strain, where the finite strain elastoplastic constitutive models are typi-
cally utilized [11,12]. It is obvious that in the case of advanced consti-
tutive models involving nonlinear elasticity, multi-surface plasticity and

combined hardening law when implemented in large-scale finite element
analyses, the formulation can be a challenging task and the solution of
constitutive integration can be rather computationally intensive. There-
fore, a fast constitutive integration algorithm, which is compatible with
complicated elastoplasticity within the finite deformation framework, is
in demand to improve the performance of finite element analysis for
engineering practical problems.

In the finite element analysis, integrating the constitutive equations to
update the stresses and the internal variables is of crucial importance.
Since the constitutive integration needs to be carried out at all yielded
integration points for each load increment and each equilibrium itera-
tion, the constitutive integration algorithm sometimes predominantly
influences the overall accuracy and efficiency of the finite element so-
lution [1,2]. Moreover, the constitutive integration algorithm determines
the formulation of consistent tangent operator which is important for
attaining the quadratic rate of convergence in the global Newton itera-
tions [1,13,14]. However, as mentioned earlier, many engineering ma-
terials exhibit complex mechanical behaviors and thus lead to
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complicated constitutive models. In these circumstances, constitutive
equations can not be integrated analytically to obtain a closed form and
thus the numerical integration techniques are usually employed. Among
those numerical integration techniques, the return mapping algorithm
based on the fully implicit backward Euler difference scheme has been
widely accepted because of its unconditional stability and excellent
robustness [14–16]. An overview of the return mapping algorithm can be
found in the book by Crisfield [4]. Obviously, the compatibility with
complicated elastoplasticity and efficiency of the integration algorithms
are the key to improve the stress update procedure and finite element
solution. To this end, a number of numerical integration algorithms
formulated in principal space have been proposed in the literature for the
last decades [5,9,10,17–23]. These numerical integration algorithms in
principal space can be classified into three categories:

(1) Algorithms based on space transformation [5,17,18]. Following
Simo's approach, some authors have carried out the numerical
integration in principal stress space and subsequently transformed
it back to the general six-dimensional stress space. In this way,
numerical determination of the principal directions and the
principal values is required. For instance, Larsson and Runesson
[18] established an implicit integration algorithm and consistent
tangent operator for yield criteria of the Mohr-Coulomb type in
principal stress space. Their integration algorithm, which only
considers isotropic hardening, has been applied to multi-surface
plasticity and covered all the possible cases of regular, corner
and apex solutions. In a later study, Peric and Neto [5] proposed a
numerical integration scheme in principal stress space for the
rate-independent elastoplastic models with yield surfaces con-
taining corners/singularities and general nonlinear isotropic
hardening. By employing the multiplicative plasticity and loga-
rithmic strain measures [2,12], they extended their algorithm to
finite strains. Although, in this kind of algorithm, the problem can
be reduced to three dimensions by using the principal values, the
determination of the principal directions/values and the trans-
formation of results between the principal and general spaces are
still needed and computationally expensive.

(2) Algorithms based on spectral decomposition [9,10,19,20]. This
kind of algorithm refers to the eigenvalues and eigenvectors of the
stress or stain tensor, which are essentially the principal values
and principal directions of the tensor. Since an intrinsic and full
tensorial description is used in the global coordinate system, this
algorithm is completed by matrix addition rather than matrix
multiplications as in algorithm 1, leading to less mathematical
operations and more efficient. For instance, Tamagnini et al. [9]
and Borja et al. [10] both employed this kind of algorithm to
formulate the return mapping algorithm and consistent tangent
operator for a three-invariant isotropic hardening elastoplastic
model. In contrast, Borja et al. [10] developed their algorithm
within the framework of finite deformation. From a somewhat
different approach, Rosati and Valoroso [19] developed an algo-
rithm starting from the derivatives of the eigenvalues and eigen-
vectors of a symmetric second-order tensors with respect to the
tensor itself. On the other hand, Foster et al. [20] modified the
algorithm by using the spectral decomposition of the relative
stress in order to incorporate the kinematic hardening into the
integration procedure within the infinitesimal framework. Indeed,
spectral decomposition can avoid space transformation proced-
ure. However, the functions and equations derived in this algo-
rithm are complicated and the numerical determination of the
principal directions or eigenvectors is still required as usual.

(3) Algorithms based on representation theorem [21–23]. In this kind
of algorithm, a set of three base tensors in conjunction with a set of
three invariants are employed for the representation of stress or
strain tensor. The base tensors, which are directly constructed by

zero-order, first-order and second-order power of an argument
second-order tensor, are complete and irreducible bases according
to the representation theorem [24,25]. By using the based tensors
and corresponding invariants, the return mapping algorithm can
be formulated in the three-dimensional principal space. The
transformation procedure between the principal and general
spaces can be avoided. Moreover, the computation of the principal
directions can be bypassed. For instance, Palazzo et al. [21]
described an integration strategy by using base tensors for infin-
itesimal three-invariant elastoplastic models with combined
isotropic-kinematic hardening law. Their base tensors are
composed of the second-order identity tensor, the stress deviator
and its square, which are non-orthogonal in principal space. As
pointed out by Criscione et al. [26], non-orthogonality leads to
constitutive models that are ill-suited for fitting parameters to
experimental data because they yield highly covariant response
terms. Moreover, the utilization of non-orthogonal base tensors
will lead to complicated and lengthy tensor andmatrix operations,
reducing the efficiency of the algorithm. This drawback was later
improved by Peng and Chen [22], who developed a return map-
ping algorithm for isotropic hardening constitutive model by
employing a set of three mutually orthogonal unit base tensors.
Their base tensors are composed of a normalized identity tensor
and two additional unit deviatoric tensors taking 0 and π/2 Lode
angles, respectively. By virtue of the mutually orthogonal unit
base tensors and corresponding invariants, the formulas associ-
ated with return mapping iteration and the consistent tangent
operator can be derived in a simple form, making the algorithm
more efficient. More recently, Huang et al. [23] further extended
the work of Peng and Chen [22] to include the finite strain effects
for large deformation analysis.

Aforementioned literature review shows different return mapping
algorithms in principal space to improve the efficiency of the constitutive
integration algorithm. In addition to the efficiency, these algorithms also
focus on complex mechanical behaviors and thus consider complicated
constitutive models (e.g. involve multi-surface plasticity, isotropic and/
or kinematic hardening law, finite strain/deformation) in order to
improve compatibility of the constitutive integration algorithm with
complicated elastoplasticity. However, to the best of our knowledge, a
return mapping algorithm in principal space, which can both consider
multi-surface plasticity and combined isotropic-kinematic hardening law
as well as nonlinear elasticity within the framework of finite deforma-
tion, has not yet been reported in the literature. In the this work, we are
going to develop a compatible and efficient constitutive integration al-
gorithm in principal space based on representation theorem for general
isotropic elastoplastic constitutive models that involve nonlinear elas-
ticity, multi-surface plasticity and combined isotropic-kinematic hard-
ening law within the framework of the finite deformation. The rest of the
paper is organized as follows. Section 2 briefly describes the base tensors
and associated basic operations. Section 3 elaborates the proposed return
mapping algorithm involving multi-surface plasticity within the finite
deformation framework. Section 4 elaborates the proposed return map-
ping algorithm involving combined isotropic-kinematic hardening law
within the finite deformation framework. Section 5 gives a step-by-step
description of the proposed return mapping algorithm involving both
multi-surface plasticity and combined hardening law as well as nonlinear
elasticity within the finite deformation framework. Section 6 carries out
numerical examples of finite element practical problems by implement-
ing the proposed constitutive integration algorithm. Section 7 discusses
the cause of efficiency improvement by the proposed algorithm. Finally,
Section 8 summarizes conclusions obtained from this research work. In
addition, the tensor and matrix notations used in this paper are detailed
in Appendix.
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