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A B S T R A C T

A new computationally interval homogenization modelling for heterogeneous materials with uncertain-but-
bounded parameters is presented in a deformation controlled setting, and the homogenization analysis in the
context of elasticity at finite deformation is then addressed by an integrative approach of finite element method
with the optimization algorithms where the interval uncertainty in the microstructure of the material is fully
considered. Different deformation-controlled boundary conditions are imposed on the representative volume
element, and the interval effective quantities involving the tangent tensor and the first Piola–Kirchhoff stress
tensor as well as the strain energy together with the effective moduli are obtained. The influences of different
uncertain cases on the interval effective quantities are also analyzed. For the purpose of verification, the results
from particle swarm optimization (PSO) algorithm are compared with those obtained from genetic algorithm (GA)
and Monte-carlo simulation. The feasibility and validity of the proposed modelling method are evidenced by the
well-agreed consequences among the above algorithms.

1. Introduction

Multiscale material modelling is tightly related to theory and simu-
lation of material properties and behavior across length and time scales
from the atomistic to the macroscopic [1]. The applications of these
techniques are mainly focused on simulations of microstructure and
mechanical properties of kinds of materials including polymers, ce-
ramics, semiconductors and metals, etc [2]. In the last decade, many
techniques of multiscale material modelling have been developed [3].
Among these modelling techniques, a distinction is made between the
hierarchical approach [2], which involves running separate models with
some sort of parametric coupling, and the hybrid approach, in which
models are run concurrently over different spatial regions of a simulation
[4]. Furthermore, JA Elliott [2] classified the hierarchy of multiscale
modelling methods into the following three categories, atomistic and
molecular modelling, mesoscale and continuum modelling, and engi-
neering and process unit design as well, to effectively represent the
characteristics of different methods in depicting temporal and spatial
scales. The atomistic and molecular modelling methods cover the

Quasicontinuum method [5], molecular dynamics [6], the Handshaking
method [7], the Bridging-domain method [3], coupling methods based
on lattice dynamics [8] and hybrid quantum mechanic–molecular me-
chanic methods [9], etc.

Mesoscopic regime lies between discrete atomic particles and FE
representations of a continuum. As far as mesoscale and continuum
modelling of multiscale material is concerned, modelling techniques in-
volves coarse graining method [2] and dissipative particle dynamics [2]
as well as direct micro-macro method [10], etc. Especially, from the
viewpoint of micromechanics, a homogenization theory has been con-
structed for the heterogeneous materials in a series of theoretical papers.
In the context of micromechanics, the effective physical behavior of a
heterogeneous structure, to be considered here as a matrix material with
separated inclusions, strongly depends on the size, shape properties and
spatial distribution of the second phase [10]. Because the length scale of
a macrostructure made up of a heterogeneous material is typically much
larger than the length scale of the heterogeneities, during standard nu-
merical analysis methods required for the solution of problems posed on
the macrostructural scale, a direct resolution of the microstructure is not
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feasible. To overcome this problem some homogenization techniques
have been created to obtain a suitable constitutive model to be inserted at
the macroscopic level [10].

The goal of homogenization is to determine the apparent physical
properties of a heterogeneous material based on the knowledge of ge-
ometry and material properties of their microstructure [11]. The method
relies on a statistically representative sample of material on the meso-
scale, referred to as a representative volume element (RVE), and on
establishing a suitable scale transition procedure between the microscale
features and the macroscale response [12]. Homogenization techniques
are both of computational [13,14] and analytical [15–17] nature,
particularly, computational homogenization technique based on finite
element has been developed as well [11].

In this work, the problem of homogenization is addressed in the
context of elasticity in the finite deformation regime. There have been
some reports published about the heterogeneous materials in the setting
of large deformations. Kouznetsova, Brekelmans and Baaijens [10] pre-
sented a direct micro-macro strategy suitable for modelling the me-
chanical response of heterogeneous materials at large deformations and
non-linear history dependent material behavior, in which the behavior
was determined through the detailed modelling of the microstructure
within the context of finite element implementation. Homogenization in
the non-linear elastic regime was pioneered by the works of Hill [12],
Hill and Rice [17] as well as Ogden [18]. An analytical approach to the
problem was developed by constructing bounds on the effective strain
energy [19]. However, non-uniqueness of the solution at finite de-
formations, the non-convexity of the strain energy function, and the
non-invertibility of the stress-strain relationship [20] render these results
applicable only in a limited range of deformation and for a limited class
of materials [21]. Moreover, in general, there is no apparent constitutive
equation that characterizes the macroscopic behavior [22]. In this case,
the computational homogenization method is undoubtedly the most
appropriate choice.

The uncertainty existing in the input and material parameters [23]
recently motivated a continuous attention to random heterogeneous
materials [14,24,25], and numbers of study have been proposed in the
framework of stochastic homogenization analysis [26–29]. The key to
random analysis is to determine the probability density function of each
random parameter, in which sufficient statistical information is needed.
For the uncertain problems with small samples or poor information, the
probability statistics of the random parameters are difficult to obtain. The
direct consequence of such complication is that the results of stochastic
analysis become less confident, or even inaccurate in some cases [30].
Therefore, there is urgent necessity to further develop other types of
uncertainty analysis simply because that stochastic approach does not
have sufficient universality to solve all problems in real-life engineering
[31]. Interval method is only concerned with the value intervals of the
uncertain parameters, and it is not necessary to determine the probability
distributions of uncertain parameters. In the interval analysis, interval
problems can be transformed into the optimization problems since the

upper and lower bounds of results are respectively corresponding to the
maximum and minimum values of the system outputs, and the work on
the interval analysis of uncertain structures has also been reported
[32–34]. Actually, the homogenization for heterogeneous materials with
uncertain-but-bounded parameters may also be addressed with the in-
terval analysis method, which, however, has never been considered so
far, and there are little reports about homogenization of heterogeneous
materials containing interval uncertainty.

The present work focuses on the interval homogenization of a three-
dimensional (3D) heterogeneous material in the frame of finite element
(FE) implementation, and the aim is to predict the mechanical behavior
of heterogeneous materials with uncertain-but-bounded parameters. The
problem is addressed in the context of elasticity in the finite deformation
regime, and the solution is based on the work of Hill [12], Hill and Rice
[17], Nemat-Nasser [35] and Ogden [18]. The uncertain-but-bounded
parameters in the microstructure of heterogeneous materials are fully
accounted for, and a computationally homogenization technique based
on FEmethod combinedwith the optimization strategy is first formulated
in a deformation controlled setting. A detailed investigation on the in-
fluences of the uncertain-but-bounded parameters on the homogenized
results is reported, and some important conclusions are obtained as well.

2. Homogenization in non-linear elasticity based on multiscale
finite element technique

In this section, the homogenization of a non-linear elasticity problem
is summarized, and a heterogeneous material M consisting of homoge-
neous isotropic matrix M1 and inclusions M2 is considered (see Fig. 1).

2.1. Macroscopic constitutive characterization

Consider the two-phase heterogeneous material M; associated with

the reference configuration R0; with constitutive equation S ¼ bSðX;EÞ;
where S and E are respectively the second Piola-Kirchhoff stress tensor
and the Green-Lagrange strain tensor. Two homogeneous isotropic ma-
terials, the matrix ðM1Þ and inclusions ðM2Þ (see Fig. 1), are characterized
by their respective constitutive equations bSIðEÞ.

A mechanical boundary value problem [11] on this heterogeneous
macrostructure M is to determine xðX; tÞ so that

DivðPÞ þ ρ0b ¼ ρ0 €x in R0 (1)

with boundary conditions x ¼ x on boundary ∂Rx
0; and p ¼ PN ¼ p on

boundary ∂Rp
0; and constitutive equation is P ¼ PðX; FÞ; where x and X

are respectively the positions of a point on the spatial configuration R and
reference configuration R0 of the material according to the continuum
mechanics, p is the traction on the surface ∂Rp

0 with outward unit normal
N;P is the first Piola-Kirchhoff stress, F is the microscopic deformation
gradient, ρ0 is the density, and ρ0b and ρ0 €x are respectively the macro-
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Fig. 1. Homogenization problem of a two-phase heterogeneous material (the original heterogeneous material of the macrostructure is replaced by the effective
material) and the micro (d: inclusions) –meso (L: RVE) –macro (D) principle of the homogenization.
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