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A B S T R A C T

Numerical verification of a method to simulate piezoelectric transducers exciting infinite elastic waveguides is
presented. The method, referred to as SAFE-3D, combines a 3D finite element (FE) model of a transducer with
a 2D semi-analytical finite element (SAFE) model of the waveguide and accounts for the dynamics of the trans-
ducer. An interpolation procedure is employed to transfer forces and displacements between the SAFE and 3D
FE models, and therefore nodes at the interface between the two models are not required to be coincident. An
Abaqus/Explicit analysis, employing a thermal equivalent piezoelectric model and absorbing boundary condi-
tions to prevent end reflections, is used to verify the accuracy of the SAFE-3D model. A piezoelectric transducer
attached to the web of a rail and driven with frequency content which excites a mode cut-off is considered. A
driving signal which does not contain cut-off frequencies is used for comparison. Time domain displacement
results computed using Abaqus/Explicit and SAFE-3D are compared directly. Several methods to alleviate the
numerical difficulties encountered by the SAFE-3D method, when transforming frequency domain displacements
to the time domain, close to cut-off frequencies are evaluated. It is shown that post-processing methods have a
similar effect to adding damping, but are less numerically expensive if iterative tuning of parameters is required.
A SAFE-based method to extract modal amplitudes from Abaqus/Explicit time domain results is used to eval-
uate the accuracy of SAFE-3D in the frequency domain. Good agreement between the SAFE-3D method and
results computed using Abaqus/Explicit is achieved, despite the Abaqus/Explicit and SAFE-3D models predicting
slightly different cut-off frequencies.

1. Introduction

Guided wave ultrasound (GWU) is well suited for inspection and
monitoring applications of elongated structures such as plates, rods,
pipes and rails [1–3]. By controlling which propagating modes are
excited, and with knowledge of the propagation characteristics, sys-
tems can be designed so that propagating energy can be distributed
across the entire cross-section of the waveguide or concentrated in spe-
cific locations, or in geometrical features, depending on what damage
is being sought. Guided waves can propagate long distance, especially
when compared to conventional ultrasonic inspection (up to kilome-
ters in some cases [4]). Furthermore, GWU is known to propagate in
structures that are covered, submerged or buried reducing preparation
efforts and cost [5–7]. These properties make GWU very attractive for
monitoring and inspection applications since long distance inspections
can be carried out from a single stationary source.
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In order to design a GWU-based non-destructive evaluation (NDE)
system, it is necessary to understand how guided waves are excited,
how they propagate (dispersion, attenuation, etc.), how they interact
with discontinuities and damage (scattering) and finally how they are
sensed (transduction). A conventional time-domain finite element anal-
ysis can be carried out to analyse the excitation, propagation, scattering
and sensing. However, this type of analysis is generally very numer-
ically expensive (if it is possible at all) especially at higher frequen-
cies and over significant propagation distance, due to the fine spacial
and temporal discretisation required. Furthermore, since the analysis
is carried out in the time domain, modal information is not obtained
directly and has to be extracted in some way. Due to these drawbacks,
the semi-analytical finite element (SAFE) method [8–10] has become
a popular analysis and design tool in the GWU community. The SAFE
method naturally computes results based on their modal contributions
and responses at significant distances can be estimated efficiently since
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the propagation direction (in which the structure is elongated) is treated
analytically.

The focus of this paper is on the analysis of guided wave excitation.
An efficient implementation of a method previously proposed by one
of the authors [11,12] is presented, which allows several design itera-
tions to be computed without having to solve the SAFE eigenvalue prob-
lem multiple times, and does not require transducer nodes to be coin-
cident with the waveguide nodes. We also consider the performance of
this method when exciting the waveguide at frequencies where modes
cut-off on the frequency axis. These frequencies have previously been
avoided [13].

Previous authors have considered the analysis of guided wave exci-
tation. Willberg et al. [1] present an overview of relevant work, includ-
ing a brief discussion of adhesive material, which we neglect in this
study (but which could be included as a thin soft layer of elements
between the transducer and the waveguide).

Hybrid models are popular in scattering studies, and are capable of
modelling wave excitation, propagation and scattering using different
discretisations or even different models entirely [14,15]. Although it
may be possible for hybrid methods to include a detailed transducer
model (especially when the procedure employs commercial finite ele-
ment software, e.g. Ref. [15]), excitation sources are usually simulated
as prescribed forces or displacements.

Lowe et al. [16] and Fateri et al. [17] consider an aluminium rod
with a large (relative to the waveguide) transducer attached. They
demonstrate the importance of including the transducer in the numer-
ical model (as opposed to simply modelling the transducer as a dis-
tributed force). Reflections and mode conversion from a coupled piezo-
electric transducer are considered. A full 3D Abaqus model of the
waveguide and transducer is used for comparison with a single point
excitation. At the excitation frequency considered in their work, there
are only three possible propagating modes, L(0,1), T(0,1) and F(1,1),
and the torsional mode is neglected. The comparison was performed in
the time domain with modes separated based on Time of Arrival (ToA).

Kalkowski et al. [18] propose a technique based on the SAFE method
for modelling waveguides with piezoelectric transducers attached. A
piezoelectric SAFE element is presented and discrete piezoelectric ele-
ments are incorporated by computing scattering matrices at locations
where geometry changes discretely. The proposed method is well suited
to prismatic transducers (with regular shape in the propagation direc-
tion) such as simple rectangular patch and sandwich transducers, but
may present difficulties when transducers have complex shape. Their
proposed method is verified numerically using a simple beam model
and validated experimentally with a short beam with anechoic termina-
tions. The paper also presents a summary of some other relevant works.

Jezzine et al. [19] consider the case of a transducer fixed to a free
end of a waveguide (i.e. on the arbitrary cross-section) using techniques
similar to those employed for scattering from free ends and disconti-
nuities [20]. They present comparison with analytical and previously
published experimental results.

One of the authors of the current work previously proposed a
method to couple a SAFE model of the waveguide with a full 3D model
of a piezoelectric transducer [11,12]. The method involves comput-
ing the effective stiffness of the infinite waveguide, and then solving
the transducer dynamics with the appropriate boundary condition, and
then finally using the reaction forces from this analysis to compute the
forced response of the waveguide. This approach properly accounts for
the dynamics of the transducer and has been validated by comparison
with experimental results away from cut-off frequencies [12,13]. This
method is generalised in this current work, so that the interface nodes
between the SAFE and 3D meshes are not required to be coincident. This
is accomplished by using a simple interpolation strategy. Furthermore,
the resonance-like behaviour encountered when exciting a mode of
propagation close to its cut-off frequency is studied and addressed. The
procedure is compared with results from a time domain solution com-
puted using the commercial finite element package Abaqus/Explicit.

This comparison represents a verification that the method correctly
solves the idealised mathematical problem. Validation would require
a very carefully controlled experiment to isolate the effects of damping
and transducer adhesion to the waveguide.

2. Problem formulation and implementation

The presentation in this section will focus on the coupling of the 3D
transducer FE model and the 2D waveguide SAFE model. More detail
regarding the conventional SAFE formulation can be found in for exam-
ple [8–10].

For the presentation, we will explicitly differentiate between dis-
placements computed in the physical 3D domain and transformed dis-
placements in the SAFE domain which are introduced in Section 2.2.
Displacements in the 3D FE domain (which are assumed to be har-
monic) are written as:

ux(x, y, z, t) = ux(x, y, z)ej𝜔t (1)

uy(x, y, z, t) = uy(x, y, z)ej𝜔t (2)

uz(x, y, z, t) = uz(x, y, z)ej𝜔t (3)

where x, y and z are the global Cartesian coordinates, ux, uy and uz are
displacements in the x, y and z directions, respectively and 𝜔 is the
angular frequency in time t, and j is the imaginary unit.

2.1. Piezoelectric finite element formulation

Piezoelectric transducers are often used to excite guided waves due
to their ability to drive high frequencies. The formulation of conven-
tional 3D finite elements is well know and will therefore not be pre-
sented here. Instead, only salient aspects of the piezoelectric implemen-
tation are presented. The standard piezoelectric finite element imple-
mentation is employed, as originally proposed by Allik et al. [21].

The coupled constitutive piezoelectric relations can be written as:

𝝈u = cE𝝐u − eT
𝝐𝜙,

𝝈𝜙 = e𝝐u + pS𝝐𝜙,
(4)

where 𝝈u represents the mechanical stress tensor while 𝝈𝜙 is the electric
flux density, which is the electrical equivalent of stress. The strain is
given by 𝝐u while the electrical equivalent of strain is the electrical field
𝝐𝜙 which is computed as the negative of the potential spacial gradient.
The third order piezoelectric coupling tensor relating displacements u
and potentials 𝜙 is denoted e. The mechanical elasticity and dielectric
constitutive matrices are represented by cE and pS respectively.

The harmonic response is computed by solving the linear system of
equations which results from the finite element formulation, written as:

⎡⎢⎢⎣
Dt Ku𝜙

KT
u𝜙 K𝜙𝜙
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{
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𝚽

}
=
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F

Q

}
(5)

where U and 𝚽 are the assembled nodal displacements and electri-
cal potentials respectively and F and Q represent assembled forces and
charges respectively. The stiffness matrix is made up of terms relating
only to electrical properties K𝜙𝜙, those coupling electrical and mechan-
ical properties Ku𝜙 and the frequency dependant dynamic stiffness of
the transducer relating only to mechanical properties:

Dt = Kuu − 𝜔2M. (6)

These equations are partitioned into known and unknown degrees of
freedom in order to solve unknown displacements and potentials as well
as reaction forces and charges. If the model is of a transducer consisting
of elastic and piezoelectric parts, electric potentials of elastic parts are
simply prescribed to be zero.
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