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A B S T R A C T

A variety of Reduced-Order Modelling (ROM) techniques have been developed for the Wave/Finite Element
(WFE) Framework. However most of these techniques are not compatible with dynamic response computation
or frequency-dependent problems. This paper introduces a new reduction strategy for the WFE method, enabling
the computation of both the forced response and the complex dispersion curves of periodic structures modelled
using large-sized finite element (FE) models. The method exploits the duality between Inverse and Direct Bloch
formulations to build a reduced solution subspace, accounting for both propagating and evanescent behaviours,
while ensuring high reduction factors. This reduction strategy therefore enables the resolution of a wider range
of problems, including near/far field response computation in finite waveguides subjected to dynamic loadings,
or vibroacoustic transmission/reflection problems. First, the method is used to compute dispersion curves and
forced response in a duct. Then a large bi-stiffened structure is studied to evaluate the method’s performances.
The high frequency resolution provided by the proposed ROM allows us to explore a variety of propagation and
guided resonances localization effects, hardly accessible otherwise. Furthermore, the considerable reduction fac-
tors enable fast wave dispersion analyses in large-scaled periodic structures, complex phononic crystals designs
or locally resonant metamaterials.

1. Introduction

An extensive research effort has been devoted to understand and
analyse wave propagation in periodic structures, meta-materials and a
broad range of lightweight structures over the past decade. Their peri-
odicity allows the computation of local wave dispersion characteristics
such as stop-bands, local resonances, diffusion and spatial attenuation
properties. This knowledge can then be used for the design and opti-
mization of a broad range of engineered media with desirable dynamic
behaviours (see Refs. [1–4]). Various methods were developed to pre-
dict wave dispersion characteristics in complex 1D or 2D periodic struc-
tures: homogenization techniques were proposed in Ref. [5] to com-
pute high-frequency dispersion characteristics in phononic waveguides.
One can also cite the work Boutin et al. [6] on equivalent models
for porous waveguides with embedded Helmoltz resonators. Multi-scale
techniques were also developed [7,8] to model heterogeneous or peri-
odic structures using limited macroscopic information. Recently, the
wave finite element method (WFEM) based on Bloch theorem, has been
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the subject of high interest (see Section 2 for a detailed discussion).
It has been used to study wave propagation and conduct vibroacous-
tic analyses in a wide range of continuous or periodic structures, as it
exploits standard FE packages to model the waveguide’s unit-cell. One
can cite applications of the WFEM to structures such as sandwich pan-
els involving different core topologies [9,10], poroelastic media [11]
or piezoelectric elements [2]. It was recently applied to perform fast
design of periodic topologies with enhanced acoustic performances by
computing local acoustic radiation [12] or transmission [13,14] prob-
lems in a variety periodic structures.

In order to further enable the development of novel acoustic or
elastic meta-structures with optimized structural configurations, con-
siderable challenges are still to be faced in terms of numerical method-
ologies. Indeed, computing the broadband dispersion diagram of com-
plex periodic waveguides requires to solve numerous large, often ill-
conditioned (see Waki et al. [15]) eigenvalue problems, whose size
is related to the FE model used to describe the waveguide’s unit-cell.
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Remarkable achievements have been achieved on reduced-order mod-
elling (ROM) strategies for wave-based methods and particularly for
the wave finite element framework. Those are driven by the need to
use refined unit-cell’s finite element model when the wavelength are
small compared with the unit-cell’s length. Reduction schemes are also
crucial to enable fast design of complex structures (e.g. to create locally
resonant behaviours, see Ref. [16] for example) or to implement topol-
ogy optimization algorithms (see Kook and Jensen [17]). Various ROM
strategies have been developed for the WFEM, enabling fast wave anal-
yses at different levels:

• A reduction strategy for computing the forced response for 1D
waveguides was developed by Mencik [18,19], along with signifi-
cant improvements on the computational efficiency and condition-
ing of the matrices. This yields a better exploitation of the computed
wave solutions to retrieve the harmonic response of a finite waveg-
uide.

• Condensation techniques have been introduced in the WFE frame-
work (see Ref. [20]) to reduce the computational effort associated
with the dynamic condensation of the inner degrees of freedom
(DOF) of the unit-cells.

• Finally, Droz et al. [21,22] developed an interface reduction tech-
nique to replace also the periodic edge DOF by a reduced number
of propagating Bloch waves. Combined with modal condensation
techniques, this method provides the dispersion curves in complex
periodic structures with up to 99% reduction of the computational
effort.

However, it is emphasized that only propagating and slightly decay-
ing wave solutions can be derived from the wave expansion strategy
mentioned above. Nonetheless, evanescent waves are crucial to describe
the local dynamics at a waveguide’s edges, or close to structural singu-
larities (e.g. a coupling element, a point force excitation). Therefore it is
obvious that none of the above mentioned ROM strategies allows both
an ultrafast computation of the dispersion curves and a further exploita-
tion for coupling or forced response computation. This work therefore
aims at the development of a reduced formulation of the dispersion
problem allowing the computation of both propagating and evanescent
waves. This will enable a further use of the obtained solutions to predict
the response to complex load cases or to perform fast diffusion analyses
through finely meshed sub-structures.

In this paper a model order reduction strategy is developed for the
wave/finite element framework, based on singular value decomposi-
tion of a discretized wave solution subset. The paper is organized into
6 sections including this introduction. The background on WFEM is
reviewed in Section 2 and some numerical issues related to Bloch wave
analysis are discussed. In Section 3 the proposed model order reduc-
tion scheme is described for the fast computation of propagating and
evanescent waves based on singular value decomposition. In Section 4,
the reduction scheme is applied to a hollow beam, which is a typical
case of continuous waveguide exhibiting multimodal behaviour when
subjected to a point force excitation in the medium frequency range.
The reduced model is used to compute wave dispersion characteris-
tics and the approximation error. Then, the forced response is com-
puted in the finite structure, to highlight the method’s performances
in the forced WFEM framework. In Section 5, the performances of the
method are challenged for a full-scaled stiffened plate with an large
unit-cell’s FE model. The vibroacoustic behaviour of this periodic struc-
ture is commonly studied though wave-based approaches and requires
the combination of the WFEM with a CMS technique. The proposed
reduction scheme is therefore applied to explore veering, locking and
stopband effects produced by the stiffeners, with a frequency resolu-
tion that could not be achieved without ROM strategy. Conclusion are
eventually drawn in Section 6.

2. Review of the WFEM framework

The WFEM framework correspond to the application of Floquet-
Bloch conditions on FE models of unit cells to compute the properties
of waves in a periodic media. First, a finite element model is obtained
using an FE package, the mesh of the unit cell should respect periodicity
conditions ensuring that primal assembly of the right and left interfaces
of the unit cell is possible. Then, the degrees of freedom of the unit
cell are separated in three groups: qL the degrees of freedom of the left
interface, qI , the internal degrees of freedom of the unit cell and qR
the degrees of freedom of the right interface. Finally, Bloch periodicity
conditions are applied on the unit cell namely: qR = 𝜆qL and fR = −𝜆f L.
f L and fR representing the efforts on the right and left interface and 𝜆

being the Floquet-Bloch propagation constant.

2.1. Inverse and direct approach pros and cons

Initially developed by Mead [23], the inverse approach consist in
fixing the propagative constant 𝜆 of a periodic structure and compute
the unknown frequencies𝜔i, solutions of the following eigenvalue prob-
lem:

(𝕂(𝜆) + j𝜔iℂ(𝜆) − 𝜔2
i 𝕄(𝜆))𝚽i = 0 (1)

where the matrices 𝕂, ℂ and 𝕄 are respectively the stiffness, damping
and mass operators of the waveguide’s periodic unit-cell obtained by
forcing the value of the propagation constant (see Eq. (6) for explicit
formulation). It is therefore emphasized that viscous and hysteretic
damping models are handled by this formulation, although more com-
plex damping models would require the resolution of non-linear eigen-
value problems:

(𝐊(𝜔i, 𝜆) − 𝜔2
i 𝕄(𝜆))𝚽i = 0 (2)

The formulation in Eq. (1) has the advantage that the matrices 𝕂(𝜆),
ℂ(𝜆) and 𝕄(𝜆) are symmetric positive whenever the propagating con-
stant 𝜆 is equal to 1 or -1 (the solutions 𝜔i are therefore correspond-
ing to the so-called cut-on frequencies). Additionally, these matrices
are self-adjoint for all the complex propagating constants located in
the unit circle. This means the eigenvalue problem is well-conditioned,
especially when no damping is present. The eigenvalues 𝜔i and eigen-
vectors 𝚽i pairs obtained by this method exhibit higher accuracy and
reliability, while iterative solvers can be used to limit the computation
to a solution subset of interest. This inverse method however, has a
number of drawbacks:

a The size of the eigenvalue problem is (n + m) where n is the number
of DOF on the section and m is the number of DOF on the inner part
of the structure.

b Since frequency is the unknown of eigenvalue problem Eq. (1), the
use of frequency-dependent material properties (such as damping)
is not straightforward. As a consequence, the prediction of non-
propagating waves in dissipative materials is limited.

c The method is not compatible with frequency-based approaches
such as the forced/coupling formulations derived from the WFEM
outputs (see Mencik and al. [18])

As a consequence of these issues, the direct approach was later
developed [24]. The direct approach assumes a known frequency and
uses dynamic condensation of the m inner DOF of the structure to
reduce the size of the spectral problem from (n + m) to n. An (n × n)
eigenvalue problem is then solved with the propagating constants as
unknowns. This eigenvalue problem can take the following among
many forms([25,26]):

(1
𝜆

D̃RL + (D̃RR + D̃LL) + 𝜆D̃LR)qL = 0 (3)
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