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A B S T R A C T

In this paper, we present an effective computational approach that combines an adaptive extended isogeometric
analysis (XIGA) method with locally refined (LR) B-splines and level set methods for modeling multiple inclusions
in two-dimensional (2D) elasticity problems. The advantage of XIGA is to model inclusions without considering
internal inclusion interfaces by additional functions. Multiple level set functions are used to represent the location
of inclusion interfaces and to define enrichment functions. Local refinement for adaptive XIGA using LR B-splines
is based on the posterior error estimator. We use the strategy of structured mesh refinement to implement local
refinement in adaptive XIGA. Numerical experiments for multiple inclusions with complicated geometries are
presented to demonstrate the accuracy and performance of the proposed approach. In addition, numerical results
indicate that the adaptive XIGA with local refinement achieves faster convergence rate than that of the XIGA
with uniform global refinement.

1. Introduction

Defects in composite materials such as inclusions, voids or cracks
are of critical issues and central importance for the structural integrity
and durability of components. For instance, material interfaces in multi-
phase materials are usually taken into account in modeling to predict
mechanical behavior and to establish macroscopic material properties.
The accurate modeling of voids and inclusions is hence essential for
realistic responses, which require not only an appropriate mechanical
model but also a sophisticated representation of the geometry. In finite
element analysis (FEA), the geometry is modeled normally by an ade-
quate mesh of the microstructure. Despite of well established mesh gen-
eration, the generation of conforming meshes is still a time-consuming
and burdensome task for complex microstructure geometries. In addi-
tion, the accuracy of the finite element method cannot be retained at
the interface since the solution is only C0-continuous on the material
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interface, which originates from the difference of material properties
on the two sides of the interface.

To solve the class of problems with material interfaces where the
discontinuity occurs in the strain field, many methods have thus been
introduced in the literature. Among them, the extended finite element
(XFEM), see e.g. [1,2], and references therein, is one of the effective
methods. The basic idea behind the XFEM is to include additional
known functions into finite element solution space by means of the
partition of unity (PU) [3]. A major advantage in this strategy is to
describe the interfaces through a level set function, with an enriched
approximation of the finite element scheme to accurately model the
different jumps at the interfaces. Sukumar et al. [4] was the first who
applied the XFEM integrated with the level set method to model holes
and inclusions without containing the interior inclusion interfaces. Yu
and Bui [5,6] have recently presented an adaptive scheme in terms
of the XFEM for simulation of two-dimensional (2D) weak and strong
discontinuities. Their 2D approach was extended to 3D cases, i.e., for
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inclusion problems [7] and cracks analysis [8]. Recently, Tran et al.
[9] used a multiple level set approach to prevent numerical artefacts
in complex microstructures with nearby inclusions within XFEM. Torn-
abene et al. [10] presented some numerical applications of composite
materials modeled using the well-known Cosserat model, and they used
an advanced strong form pseudo-spectral method to deal with geomet-
ric and material discontinuities. Fantuzzi [11] solved inclusion prob-
lems using the strong formulation finite element method (SFEM), and
the SFEM observes fast accuracy and the results are in good agreement
with the reference solutions. Dimitri et al. [12] numerically studied the
cracking process of bi-material interfaces by combining the XFEM and
the level set method (LSM), and remarkable agreements are achieved
between the XFEM and the SFEM results.

Isogeometric analysis (IGA) developed by Hughes et al. [13] aims
to unify the fields of Computer Aided Design (CAD) and FEA. The prin-
ciple of IGA is to adopt CAD basis functions (e.g., NURBS, T-spline)
as shape functions of FEA, the IGA thus possesses many good proper-
ties such as the exactness of reproducing the geometry, higher-order
continuity, simple mesh refinement, and avoiding the traditional mesh
generation procedure. The IGA has been successfully applied in many
areas of engineering and science, see e.g., [14–20]. The authors recently
have used the IGA to solve some problems [21–28]. Based upon the
idea of enrichment concepts, the IGA has been enhanced by adding
appropriate enrichment functions in the approximation spaces for prob-
lems with discontinuous solutions, which forms a similar discrete dis-
cretization scheme of the XFEM. However, the extended isogeometric
analysis (XIGA) takes all the advantages of XFEM that can model the
problems with discontinuous solutions without considering the interior
discontinuous interfaces. Many researchers and scientists have further
extended and applied the XIGA to solve a class of discontinuities prob-
lems for different engineering materials. For instance, Luycker et al.
[29] and Ghorashi et al. [30] estimated stress intensity factors and
crack propagation in 2D elasticity. Bui [31] studied dynamic and static
crack behaviors in smart piezoelectric materials. Bayesteh et al. [32]
analyzed thermal-mechanical fracture of inhomogeneous cracked func-
tional materials. The XIGA was applied to address weakly discontinu-
ous problems by Jia et al. [33]. Recently, Singh et al. [34] proposed
a simple, efficient and accurate Bézier extraction based T-spline XIGA
for crack simulations, and Nguyen et al. [35] presented an adaptive
XIGA based on polynomial splines over hierarchical T-meshes (PHT-
splines) for modeling crack propagation. Consequently, the XIGA has
been shown to be a powerful technique for numerical simulation for a
wide range of discontinuity problems. On the other hand, in IGA con-
text, B-splines and non-uniform rational B-splines (NURBS) [36,37] are
the most widely used as its basis functions. Because of their high order
continuity, the implementation of B-splines or NURBS in IGA gives a
high order continuous approximation. However, the lack of local refine-
ment ability makes both B-splines and NURBS a significant challenge to
be used in an effective IGA since they are characteristically formulated
as global tensor products of several univariate B-splines. The situation
becomes more critical once modeling discontinuous problems, where
several local regions crucially require fine meshes. To overcome their
limitations, several alternative splines that offer local adaptive refine-
ment have been proposed and investigated, such as T-splines [38–40],
truncated hierarchical B-splines [41], PHT-splines [42,43], and locally
refined (LR) B-splines [44]. Among them, LR B-splines, which was first
used in adaptive IGA by Johannessen et al. [45], provide more versatile
choices for refinement strategies [46], and thereby, have emerged as
potentially alternative framework in IGA. Kumar et al. [47] then pre-
sented a posteriori error estimation technique in adaptive IGA using LR
B-splines. In addition, LR B-splines have been applied to solve several
problems in fluid mechanics [48,49]. On the other hand, since the XIGA
is established based on the framework of IGA, it is highly potential to
implement the LR B-splines into XIGA to develop an efficient method
for modeling internal interfaces. However, to the best of our knowl-
edge, there is still no such adaptive XIGA implementation for inclusions

available in the literature.
In this paper, we develop an effective computational approach that

combines an adaptive XIGA method using LR B-splines and multiple
level set method for modeling multiple inclusions in 2D elasticity with-
out meshing the internal interfaces. Inclusions are represented and for-
mulated through a coupling setting between XIGA and the level set
method [50]. Particularly, multiple level set functions are used to rep-
resent inclusion interfaces and applied to define enrichment functions.
According to Zienkiewicz and Zhu method [51], the strain recovery
technique is developed to obtain the posterior error estimator. Local
refinement is implemented based on the posterior error estimator and
the strategy of structured mesh refinement [45]. The desirable charac-
teristics of the developed adaptive approach are illustrated through six
numerical experiments with single and multiple inclusions problems.
Based on the numerical examples, we will address the efficiency and
accuracy of the proposed adaptive XIGA.

The advantages of the proposed methodology are as follows: (1)
inclusions modeling using the XIGA does not consider the internal
inclusion interfaces compared with the traditional IGA; (2) XIGA based
on LR B-splines has the features of the NURBS-based XIGA, however,
the present method can be locally refined, which is not available in
the NURBS-based XIGA. Thus, the required domain will be refined to
improve the accuracy at a low cost; (3) owing to the higher-order con-
tinuity of B-spline basis functions, the resulting stresses derived from
the present method are smooth, which are not available in the XFEM
with C0-continuity of inter-elements; and the present method has the
higher accuracy and higher-order convergence rate over the conven-
tional XFEM.

The paper is organized as follows. Section 2 presents the fundamen-
tal equations for inclusions in 2D elasticity. In Section 3, B-splines,
NURBS and LR B-splines are briefly introduced. The formulations of
XIGA for multiple inclusions are presented in details. In addition, the
posterior error estimator based on strain recovery is provided. At the
last of the section we offer a procedure of adaptive XIGA method for
multiple inclusions. Six numerical examples are presented in Section 4
to verify the efficiency and accuracy of the proposed method. The paper
ends with a summary in the last section.

2. Fundamental equations

Consider a body occupying an open bounded domain Ω ∈ ℝ2, with
boundary Γ. The domain Ω is composed of multiple homogeneous
isotropic materials. The boundary Γ = Γu ∪ Γt ∪

Nints
k=1 Γk

I , where Γu, Γt are
the Direachlet displacement and Neumann traction boundary, respec-
tively, Γk

I are the material interfaces and Nints is the total number of
interior material interfaces. Traction is continuous along the material
interfaces Γk

I . The mechanical equilibrium equations of linear elasto-
static problems are given by:

∇ · 𝝈 + b = 0 in Ω, (1a)

u = u on Γu, (1b)

𝝈 · n = t on Γt , (1c)

[[𝝈 · nk
I ]] = 0 on Γk

I , k = 1,… ,Nints, (1d)

where u is unknown displacement field; 𝝈 is the stress tensor; b is the
body force; u and t are the prescribed displacement and traction bound-
ary conditions, respectively; and n is the unit outward normal to Ω. The
continuity of tractions along the material interfaces is guaranteed by the
last equation.

The strain and stress fields are expressed as

𝜺 = ∇su, (2a)
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