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A B S T R A C T

The aim of this paper is to present the implementation of 3D fractional viscoelastic constitutive theory presented
in Alotta et al., 2016 [1]. Fractional viscoelastic models exactly reproduce the time dependent behaviour of
real viscoelastic materials which exhibit a long “fading memory”. From an implementation point of view, this
feature implies storing the stress/strain history throughout the simulations which may require a large amount
of memory. We propose here a number of strategies to effectively limit the memory required. The form of the
constitutive equations are summarized and the finite element implementation in a Newton-Raphson integration
scheme is described in detail. The expressions that are needed to be coded in user-defined material subroutines
for quasi static and dynamic implicit and explicit analysis (UMAT and VUMAT) in the commercial finite element
software ABAQUS are readily provided. In order to demonstrate the accuracy of the numerical implementation
we report a number of benchmark problems validated against analytical results. We have also analysed the
behaviour of a viscoelastic plate with a hole in order to show the efficiency of these types of models. The source
codes for the UMAT and VUMAT are provided as online supplements to this paper.

1. Introduction

In the last decade the use of fractional viscoelastic models has gained
interest among researchers as they are capable of accurately represent
both creep and relaxation behaviour of viscoelastic materials and the
effects of “fading” memory captured experimentally. It has been widely
shown that, during a creep/relaxation test, the stress/strain response
of viscoleastic materials is characterized by a power law with respect
to time; examples are polymers, biological tissues, asphalt mixtures,
soils ([2–6]) among others. A power-law in the creep and relaxation
responses leads to fractional viscoelastic constitutive models which
are characterized by the presence of derivatives and integrals of non-
integer order (see Refs. [7,8]). The most attractive aspect of using
fractional operators in the viscoelastic constitutive laws is that the
stress/displacement response depends on the previous stress/strain his-
tory, which allows the long “fading” memory of the material to be taken
into account. Another advantage of fractional viscoelastic models is that
they are defined by a small number of parameters compared to classical
integer order viscoelastic models. Numerous studies have been devoted
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to theoretical aspects of 1D fractional constitutive laws ([3,9–14]) as
well as experimental aspects and parameter characterization ([15–20])
of the constitutive behavior and also application to beam models sub-
jected to both deterministic ([21,22]) and stochastic ([23–25]) condi-
tions. The influence of temperature on the response of fractional vis-
coelastic models has also been investigated ([26,27]). Some numeri-
cal implementation of 1D fractional constitutive laws in finite element
codes has been presented (see for example [28]).

3D formulations of fractional viscoelastic models have been pro-
posed and studied (see for example [1,29–32]). In order to be able
to use these models to represent the behaviour of real-life engineer-
ing components with complex shapes, it is necessary to perform the
implementation of these constitutive models into finite element soft-
ware. To the author’s knowledge the implementation of 3D formula-
tions of fractional viscoelastic models in a finite element context is lack-
ing. Indeed, to the best of the authors’ knowledge only in Ref. [33] an
effort was made to implement fractional viscoelasticity in a finite ele-
ment code. However, only the fractional standard linear solid (FSLS)
model was considered in the paper [33], while many researchers of
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the field use also other fractional viscoelastic model such as the spring-
pot, the fractional Kelvin-Voigt (FKV) model and the fractional Maxwell
(FM) model. Hence, the aim of this paper is the implementation of the
most used three dimensional fractional viscoelastic constitutive laws
in finite element (FE) codes. In particular, we fully cover the details
of the implementation of these models in user-defined material sub-
routines in the commercial finite element software ABAQUS. In our
opinion, the numerical implementation of a new fractional viscoelas-
tic theory using the finite element method is often a laborious task
especially for researchers new to this area. Here we clearly show the
expression of the constitutive tangent tensor that needs to be imple-
mented in the UMAT routine; the implementation is straightforward
also for researchers and engineers that have not specific knowledge
of fractional calculus. The details of numerical procedures and related
expressions that need to be implemented in user defined routines are
not extensively published in the literature. Recently, there has been an
interest in the dissemination of new computational procedures through
publishing research papers addressing all of the aspects related to their
implementation. For instance Chester et al. [34] recently presented the
implementation of a coupled diffusion mechanics model for elastomeric
gels as a user-defined element (UEL) subroutine in ABAQUS. Further-
more, the implementation of a coupled mechanics-diffusion theory in
a user defined material routine (UMATHT) in ABAQUS has been pre-
sented by Barrera et al. [35] in order to study hydrogen embrittlement
mechanisms of steels. Also a cohesive finite element as a UEL subroutine
in ABAQUS has also been published by Park and Paulino [36]. Here we
show that these 3D fractional viscoelastic models can be easily imple-
mented numerically in a finite element context by using the discretized
version of fractional derivatives provided by Grünwald-Letnikov [7]. In
this paper we also include the details of computational tools used to
access the strain (and/or the stress) history and the possible strategies
to reduce the amount of memory required to run analysis of large FE
models. This issue has not been discussed elsewhere. The source codes
for implicit and explicit analysis of the 3D fractional Kelvin Voigt model
are reported as an online supplement to this paper.

The paper is organized as follows: firstly the three-dimensional
springpot model is summarized (this is also discussed extensively in
Ref. [1]) and then its implementation is described; second, the other
fractional viscoelastic models are introduced and their implementa-
tion is presented. We then discuss possible solutions to limit the mem-
ory required to run large simulations. Finally, comparisons with some
benchmark problems are presented in order to show the accuracy of
the routines and the possibility to reproduce a wide range of different
behaviours.

2. 3D fractional constitutive law

It is well known that a viscoelastic material can be characterized,
for one dimensional problems, by its Relaxation and Creep functions
R(t) and C(t) respectively. These functions describe the behaviour of
the material when a constant strain and a constant stress are applied,
respectively.

Experimental tests on real viscoelastic materials, such as polymers,
asphalt mixtures, biological tissues, have shown that creep and relax-
ation are well fitted by power laws of real order rather than expo-
nential functions. In the simplest case in which only one compo-
nent of the stress is present (hydrostatic or tangential stress), and the
creep/relaxation behaviour is well fitted by pure power laws, the relax-
ation function R(t) and the creep function C(t) are given as [1]:

R(t) =
C𝜌t−𝜌

Γ(1 − 𝜌) ; C(t) = t𝜌
C𝜌Γ(1 + 𝜌) (1)

where Γ(·) is the Euler gamma function, 𝜌 is a real number 0 ≤ 𝜌 ≤ 1
and C𝜌 is a material parameter evaluated by fitting creep or relaxation

experimental curves.
In the frame of linear viscoelasticity, the Boltzmann superposition

principle allows us to obtain the response of a material when the
imposed stress s(t) or strain history e(t) is not constant and can be
expressed in two forms:

s(t) = ∫
t

0
R(t − 𝜏)ė(𝜏)d𝜏 (2a)

e(t) = ∫
t

0
C(t − 𝜏)ṡ(𝜏)d𝜏 (2b)

These integrals are often labelled as “hereditary” integrals, because the
actual value of s(t) (or e(t)) depends on the entire previous history of
e(t) (or s(t)). Eqs. (2a) and (2b) are valid for unstrained/unstressed state
for t ≤ 0. If e(0) = e0 ≠ 0 the term R(t)e0 has to be added in Eq. (2a)
or if s(0) = s0 ≠ 0 the term C(t)s0 has to be added in Eq. (2b). In the
following, without any loss of generality, we suppose that e0 = 0 and
s0 = 0.

Substitution of Eq. (1) in Eqs. (2a) and (2b) leads to constitutive
laws that involve fractional operators, namely derivatives and integrals
of real order ([7], [8]). This is straightforward for the case in which a
strain history is applied (Eq. (2a)) and we want to evaluate the corre-
sponding stress history:

s(t) =
C𝜌

Γ(1 − 𝜌) ∫
t

0
(t − 𝜏)−𝜌ė(𝜏)d𝜏 = C𝜌

(C
0 D𝜌

t e
)
(t) (3)

In Eq. (3) the symbol
(

C
0D𝜌

t ·
)

represents the Caputo fractional derivative
([7]) of order 𝜌, that is a convolution integral with a power law kernel.
In the following sections we will refer to it as (D𝜌·). If we consider the
case in which a stress history is applied (Eq. (2b)), integrating by parts
and after some manipulations we obtain the Riemann-Liouville (RL)
fractional integral of order 𝜌

(
0D−𝜌

t ·
)

([7]):

e(t) = 1
C𝜌Γ(1 + 𝜌) ∫

t

0
(t − 𝜏)𝜌ṡ(𝜏)d𝜏 = 1

C𝜌Γ(𝜌) ∫
t

0
(t − 𝜏)𝜌−1s(𝜏)d𝜏

= 1
C𝜌

(
0D−𝜌

t s
)
(t) (4)

In the following we will refer to the RL fractional integral as D−𝜌.
The constitutive laws in Eq. (3) and Eq. (4) represent the response of
a “springpot” element ([37]). It has been shown in Ref. [9] that the
behaviour of the springpot can be reproduced in a classical viscoelas-
ticity framework by an infinite sequence of massless laminae linked
by springs/dashpots and laying in a bed of dashpots/springs. This is
the reason why the use of fractional viscoelasticity results in a signif-
icant reduction of mechanical parameters compared to using calssical
viscoelastic models.In order to model the isotropic three-dimensional
behaviour of the springpot, it is sufficient to define two relaxation (or
creep) functions. The most convenient choice is to use volumetric and
deviatoric relaxation (or creep) functions. The relaxation matrix can be
written as follows:

Rijkh(t) =
(

KR(t) −
2
3

GR(t)
)
𝛿ij𝛿kh + GR(t)

(
𝛿ik𝛿jh + 𝛿ih𝛿jk

)
(5)

where 𝛿ij is the Kronecker symbol. For both deviatoric GR(t) and vol-
umetric relaxation functions KR(t), power law functions analogous to
first of Eq. (1) are selected:

GR(t) =
G𝛼t−𝛼

Γ(1 − 𝛼) (6a)

KR(t) =
K𝛽 t−𝛽

Γ(1 − 𝛽) (6b)

where K𝛼 and G𝛽 are anomalous bulk and shear relaxation moduli,
respectively, while 𝛼 and 𝛽 are real numbers indicating the orders of
bulk and shear power laws, respectively.

29



Download English Version:

https://daneshyari.com/en/article/6925281

Download Persian Version:

https://daneshyari.com/article/6925281

Daneshyari.com

https://daneshyari.com/en/article/6925281
https://daneshyari.com/article/6925281
https://daneshyari.com

	tooltip zref@5: 
	tooltip zref@6: 


