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A B S T R A C T

A new hyperelastic material model is proposed for graphene-based structures, such as graphene, carbon nan-
otubes (CNTs) and carbon nanocones (CNC). The proposed model is based on a set of invariants obtained from
the right surface Cauchy-Green strain tensor and a structural tensor. The model is fully nonlinear and can simu-
late buckling and postbuckling behavior. It is calibrated from existing quantum data. It is implemented within a
rotation-free isogeometric shell formulation. The speedup of the model is 1.5 relative to the finite element model
of Ghaffari et al. [1], which is based on the logarithmic strain formulation of Kumar and Parks [2]. The material
behavior is verified by testing uniaxial tension and pure shear. The performance of the material model is illus-
trated by several numerical examples. The examples include bending, twisting, and wall contact of CNTs and
CNCs. The wall contact is modeled with a coarse grained contact model based on the Lennard-Jones potential.
The buckling and post-buckling behavior is captured in the examples. The results are compared with reference
results from the literature and there is good agreement.

1. Introduction

Graphene and graphene-based structures such as carbon nanotubes
(CNT) and carbon nanocones (CNC) [3–8] have unique mechanical
[9–11], thermal [12–15] and electrical [16–19] properties. They can be
used in sensors [20], energy storage devices [21], healthcare [22] and
as a coating against corrosion [23]. They are used to improve mechani-
cal, thermal and electrical properties of composites [24–28]. CNTs and
CNCs can be obtained by rolling of a graphene sheet [29,30]. Robust
and efficient analysis methods should be developed in order to reduce
the time and cost of design and production.

There are several different approaches in the literature for model-
ing graphene. One is based on the Cauchy-Born rule applied to inter-
molecular potentials. Arroyo and Belytschko [31] propose an exponen-
tial Cauchy-Born rule to simulate the mechanical behavior of CNTs.
Guo et al. [32] and Wang et al. [33] use a higher order Cauchy-Born
rule to model CNTs. Yan et al. [34] use a higher order gradient contin-
uum theory1 and the Tersoff-Brenner potential to obtain the proper-
ties of single-walled CNCs. A second approach is based on the quasi-
continuum method [35]. Yan et al. [36] apply the quasi-continuum
to simulate buckling and post-buckling of CNCs. A temperature-related
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1 This method is similar to the Cauchy-Born rule.

quasi-continuum model is proposed by Wang et al. [37] to model the
behavior of CNCs under axial compression. A third approach is based on
classical continuum material models. Those are popular for graphene
in the context of isotropic linear material models. Firouz-Abadi et al.
[38] obtain the natural frequencies of nanocones by using a nonlo-
cal continuum theory and linear elasticity assumptions. Their work
is extended to the stability analysis under external pressure and axial
loads by Firouz-Abadi et al. [39] and the stability analysis of CNCs con-
veying fluid by Gandomani et al. [40]. Lee and Lee [29] use the finite
element (FE) method to obtain the natural frequencies of CNTs and
CNCs. The interaction of carbon atoms is modeled as continuum frame
elements. Graphene has an anisotropic behavior under large strains.
There are several continuum material models for anisotropic behavior
of graphene. Sfyris et al. [41] and Sfyris et al. [42] use Taylor expansion
and a set of invariants to propose strain energy functionals for graphene
based on its lattice structure. Delfani et al. [43] and Delfani and Shodja
[44,45] use a similar Taylor expansion for the strain energy and apply
symmetry operators to the elasticity tensors in order to reduce the num-
ber of independent variables. Nonlinear membrane material models are
proposed by Xu et al. [46] and Kumar and Parks [2]. They use ab-initio
results to calibrate their models. The model of Kumar and Parks [2] is
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based on the logarithmic strain and the symmetry group of the graphene
lattice [47–49]. This symmetry group reduces the number of parame-
ters in the model of Xu et al. [46] by a half. The membrane model of
Kumar and Parks [2] is extended by Ghaffari et al. [1] to a FE shell
model by adding a bending energy term. Such FE models tend to be
much more efficient than all-atom models: Ghaffari et al. [1] study the
indentation of a square sheet with length 550 nm and found that the
FE model requires 122,412 nodes, while the corresponding atomistic
system has about 12 million atoms, i.e. about 100 times more. Ghaffari
and Sauer [50] conduct a modal analysis of graphene sheets and CNTs
under various nonlinearities. A finite thickness for graphene is consid-
ered in the most of the mentioned works. Thus, an integration through
the thickness needs be conducted to obtain the bending stiffness. The
finite thickness assumption can be avoided by writing the strain energy
density per unit area of the surface as in Ghaffari et al. [1], Kumar and
Parks [2], Xu et al. [46] and Ghaffari and Sauer [50].

The material model of Ghaffari et al. [1] and the proposed new
material model in the current paper are implemented in the rotation-
free isogeometric finite shell element formulation of Sauer et al. [51],
Sauer and Duong [52] and Duong et al. [53]. This formulation is based
on displacement degree of freedoms (DOFs) and avoids rotation DOFs
through the use of Kirchhoff-Love kinematics and NURBS discretiza-
tion [54]. The avoidance of rotational DOFs increases efficiency and
simplifies the formulation [55]. A material model based on contin-
uum mechanics is necessary for the development of a shell formulation.
The model of Ghaffari et al. [1] is quite complicated and computation-
ally expensive. It is based on a logarithmic strain formulations, which
requires using chain rule and summation over fourth and sixth order
tensors (see Sec. 2 for more details). This high computational cost is
avoided in the new proposed material model.

In summary, the novelties of the current work are:

• It can be used both in curvilinear and Cartesian shell formulations.
• It is simpler to implement and thus 1.5 faster2 than the model of

Ghaffari et al. [1].
• It is fully nonlinear and can capture buckling and post-buckling

behavior.
• It is suitable to simulate and study carbon nanocones under large

deformations.
• It is applied to simulate contact of CNTs and CNCs with a Lennard-

Jones wall.
• The latter example demonstrates that CNCs are ideal candidates for

AFM tips.

The remainder of this paper is organized as follows: In Sec. 2 the
finite element formulation is summarized and the development of a new
material model is motivated. In Sec. 3, a new hyperelastic shell material
model for graphene-based structures is proposed. In Sec. 4, the model is
verified and compared with the model of Ghaffari et al. [1] considering
various test cases. Sec. 5 presents several numerical examples involving
buckling and contact of CNTs and CNCs. The behavior is compared with
molecular dynamics and quasi-continuum results from the literature.
The paper is concluded in Sec. 6.

2. Finite element formulation for Kirchhoff-Love shells

It this section, the discretized weak form is summarized and the
development of a new material model is motivated. The Cauchy stress
tensor of Kirchhoff-Love shell theory can be written as3 [52]

𝝈KL = N𝛼𝛽 a𝛼 ⊗ a𝛽 + S𝛼 a𝛼 ⊗ n , (1)

2 In computing the stiffness matrix.
3 Subscript KL is added here to distinguish the total Cauchy stress 𝝈KL from its mem-

brane contribution 𝝈 ≔ 𝜎𝛼𝛽a𝛼 ⊗ a𝛽 .

where

N𝛼𝛽 = 𝜎𝛼𝛽 + b𝛽𝛾 M𝛾𝛼 (2)

and

S𝛼 = −M𝛽𝛼
;𝛽 (3)

are the components of the membrane stress and out-of-plane shear.
Here, “;” denotes the co-variant derivative, and a𝛼 and n are the tangent
and normal vectors of the shell surface in the current configuration, see
Appendix A. For hyperelastic materials, 𝜎𝛼𝛽 and M𝛼𝛽 are given by

𝜎𝛼𝛽 = 𝜏𝛼𝛽∕J , 𝜏𝛼𝛽 = 𝜕W
𝜕a𝛼𝛽

, (4)

M𝛼𝛽 = M𝛼𝛽
0 ∕J , M𝛼𝛽

0 = 𝜕W
𝜕b𝛼𝛽

, (5)

where W is the strain energy density per unit area of the initial con-
figuration, and a𝛼𝛽 and b𝛼𝛽 are the covariant components of the metric
and curvature tensor [52]. b𝛽𝛼 in Eq. (2) are the mixed components of
the curvature tensor (see Appendix A). The discretized weak form for
Kirchhoff-Love shells can be written as [53].
nel∑
e=1

(Ge
int + Ge

c − Ge
ext) = 0 ,∀ 𝛿𝐱e ∈  , (6)

where 𝛿xe is the variation of the element nodes, nel is the number of
elements and  is the space of admissible variations. Ge

c and Ge
ext are

related to contact and external forces [1]. Ge
int is the internal virtual

work of element Ωe
0 defined as

Ge
int ≔ 𝛿𝐱T

e (𝐟 e
int𝜏 + 𝐟 e

intM) , (7)

with

𝐟 e
int𝜏 = ∫

Ωe
0

𝜏𝛼𝛽 𝐍T
,𝛼 a𝛽 dA ,

𝐟 e
intM = ∫

Ωe
0

M𝛼𝛽
0 �̃�T

;𝛼𝛽 n dA ,

(8)

where N, N,𝛼 and �̃�;𝛼𝛽 are the shape function arrays of the element that
are defined as

𝐍 ∶= [N1 1,N2 1,… ,Nne
1] ,

𝐍,𝛼 ∶= [N1,𝛼 1,N2,𝛼 1,… ,Nne,𝛼
1] ,

�̃�;𝛼𝛽 ∶= 𝐍,𝛼𝛽 − Γ𝛾
𝛼𝛽

𝐍,𝛾 ,

𝐍,𝛼𝛽 ∶= [N1,𝛼𝛽 1,N2,𝛼𝛽 1,… ,Nne,𝛼𝛽
1] .

(9)

Here, “•, 𝛼” denotes the parametric derivative 𝜕•/𝜕𝜉𝛼, and 1 and Ni are
the three dimensional identity tensor and the NURBS shape functions
[54]. 𝜏𝛼𝛽 and M𝛼𝛽

0 need to be specified for the finite element implemen-
tation through Eqs. (4) and (5). 𝜏𝛼𝛽 corresponds to the components of
the in-plane Kirchhoff stress tensor 𝝉 = J𝝈. They are equal to the com-
ponents S𝛼𝛽 of the in-plane second Piola-Kirchhoff (2.PK) stress S = S𝛼𝛽
A𝛼 ⊗ A𝛽 since

𝜏𝛼𝛽 = a𝛼 · 𝝉a𝛽 = A𝛼 · SA𝛽 = S𝛼𝛽 , (10)

due to 𝝉 = F S FT and a𝛼 = F−TA𝛼 . Here F = a𝛼 ⊗ A𝛼 is the surface
deformation gradient. A𝛼 (a𝛼) and A𝛼 (a𝛼) are the tangent and dual
vectors in the reference (current) configuration (see Appendix A). Fol-
lowing Eq. (4), the 2.PK stress S can also be written as

S = 2𝜕W
𝜕C

, (11)

where C = FT F is the right surface Cauchy-Green deformation tensor. S
can be computed by using Eq. (11). However, if the model is developed

43



Download English Version:

https://daneshyari.com/en/article/6925287

Download Persian Version:

https://daneshyari.com/article/6925287

Daneshyari.com

https://daneshyari.com/en/article/6925287
https://daneshyari.com/article/6925287
https://daneshyari.com

	tooltip zref@0: 
	tooltip zref@1: 


