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This paper investigates a method for improving the accuracy of the stress predicted from models using the
mean-strain finite elements recently proposed by Krysl and collaborators [IJNME 2016, 2017]. In state-of-the-art
finite element programs, the stress values at the integration points are commonly post-processed to obtain nodal
values of stress. The mean stresses are element-wise constant, and hence the nodal values obtained from the mean
stresses tend to be of lower accuracy. The proposed method post-processes the uniform stress in each element
in combination with a linearly-varying stabilization stress field to produce a more accurate representation of
the nodal stresses. Selected examples are presented to demonstrate improvements achievable with the proposed
methodology for hexahedral and quadratic tetrahedral mean-strain finite elements.

1. Introduction

A few recent publications described high-performance mean-strain
finite elements based upon the idea that the rank-deficient mean-strain
element can be stabilized (in the sense of correcting the rank deficiency)
by setting up two forms of stabilization energy that is sampled with the
full quadrature rule or with the mean-strain quadrature [1-6]. These
elements achieve insensitivity to material constraints (for instance iso-
choric), and they are applicable to the modeling of thin structures. The
mean-strain approach however makes the stress post-processing more
challenging. While the stresses are uniform element-wise, the mean-
strain elements achieve high accuracy in displacements. Consequently
it is reasonable to expect that using the accuracy inherent in the dis-
placement solution, there might be some way of boosting the accuracy
of the stresses as well. This is the motivation for the present work.

The stress values in Finite Element Analysis (FEA) are connected to
the integration points. A common post-processing operation for stresses
in FEA is to recover continuous stress fields from the quadrature-
point stresses. In order to visualize the stress distribution, the stress
is extrapolated from the quadrature points to the nodes of each ele-
ment. Then the stress field can be visualized element-wise using filled-
contour plots, isosurfaces, etc., but it is (typically) discontinuous at
the inter-element boundaries. Alternatively, the nodal stresses can be
made unique at each node shared by several finite elements by some
form of “averaging” of the element-wise stress predictions at the node.
In order for this averaging to work well, the stress predictions at the
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nodes of each element must be of good quality. This condition is not
satisfied when using the mean-strain elements, such as the elements
proposed in Refs. [1-6], or the hexahedral elements implemented in
the Abaqus solvers [7]. In this work, we attempt to improve accu-
racy of the integration-point stresses extrapolated to the nodes of an
element.

First, let us mention some procedures from literature for extracting
nodal quantities from an element. One popular technique for improved
stress approximation is the ‘superconvergent patch recovery’ (SPR)
method developed by Ref. [8]. It is developed based on the presence
of superconvergent points in a finite element, where the stresses have
an order of accuracy higher than rest of the finite element region. The
stresses are fitted using a polynomial of one order higher than that of
the strains, in a least squares sense. However, the presence of super-
convergent points is not always guaranteed, for example, in curved
elements. Also, in some element configurations, for instance, elements
located at corners or at edges of three-dimensional geometries may
not provide enough superconvergent points around a given node to
enable the requisite least-squares solution. In this case the SPR, extrap-
olation fails and needs to be replaced with a simpler, less accurate,
procedure.

The nodal point forces in a finite element were used by Refs. [9,10]
to compute interpolated stresses which are shown to be enhanced
in quality as compared to the directly-computed stresses in triangle,
quadrilateral and tetrahedral elements. The stresses at a node are com-
puted using an average over a patch of elements containing the node.
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Fig. 1. Elliptic membrane.
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Fig. 2. LE1 benchmark. Errors in o,, at Point D with mesh refinement

»
(Quadratic Tetrahedral elements).

Since the stresses computed are based on the real material, achieving
improved stress approximation in nearly incompressible materials is dif-
ficult. An enhanced stress approximation was proposed in Ref. [11] by
assuming a richer interpolation space for the stresses and by improving
the fulfillment of equilibrium by weakening the equilibrium in a small
patch of elements.

The aforementioned stress computation procedures are applicable
to the mean-strain finite elements as well. In comparison, the present
approach has perhaps the advantage of simplicity, which may trans-
late to a higher computational efficiency. The paper is organized as
follows. In Section 2, the mean-strain formulation is derived from a
variational principle for linear elasticity to obtain the stiffness matrix
generated only by the constant-strain modes [1,3,6]. This can lead to
the formation of hourglass modes, and stabilization is required to pre-
vent this. The design of the stabilization material model to suppress the
rigid body modes and to represent the bending strain energy accurately
is discussed in Section 3. The stabilization strain energy is sampled
using two quadrature rules, full quadrature and mean-strain quadra-
ture to prevent the stiffness matrix from being rank-deficient while at
the same time guaranteeing convergence. The proposed stress computa-
tion procedure which is expected to be improved over the mean stresses
is discussed in Section 4. The proposed stress field is derived using
the mean-strain theory and stabilization energy concepts, and a linear
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Fig. 3. LE1 benchmark. Errors in o,y at Point D with mesh refinement (Hexa-
hedral elements).

Fig. 4. LE1 Benchmark, Coarsest meshes used for mesh refinement study (a)
Quadratic Tetrahedral elements (b) Hexahedral elements.

stress field is computed within each element by extrapolating the sta-
bilization material stresses from the integration points to the nodes of
each element. Section 5 presents some selected examples demonstrat-
ing the improvement of stress prediction using the proposed stress field
over the mean stresses for static, compressible and nearly incompress-
ible material models meshed using quadratic tetrahedral and hexahe-
dral elements. The examples used for verification in this work are an
elliptic membrane (Subsection 5.1), thick plate under pressure loading
(Subsection 5.2), an infinite slab with a stress-free hole under far-field
tensile loading (Subsection 5.3), thin cantilever beam with end shear
loading (Subsection 5.4) and fibrous composite cube under general syn-
thetic quadratic displacements (Subsection 5.5). Section 6 summarizes
the work and presents the key conclusions.

2. Mean strain formulation

In this section, a brief review of mean-strain finite element formula-
tion for linear elasticity from Refs. [1,3,6] is presented. We confine our
presentation to the parts that are essential for developing the proposed
stress field. In this work, we consider both the mean strain hexahe-



Download English Version:

https://daneshyari.com/en/article/6925299

Download Persian Version:

https://daneshyari.com/article/6925299

Daneshyari.com


https://daneshyari.com/en/article/6925299
https://daneshyari.com/article/6925299
https://daneshyari.com/

	tooltip zref@0: 
	tooltip zref@1: 
	tooltip zref@5: 
	tooltip zref@8: 
	tooltip zref@11: 
	tooltip zref@14: 


