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A B S T R A C T

This paper presents a new Lagrangian particle method for the simulation of manufacturing processes involving
large strain and material failure. The starting point is to introduce some stabilization terms as a means of cir-
cumventing the onerous zero-energy deformation in the Lagrangian particle method. The stabilization terms are
derived from the approximate strain vector by the combination of a constant and strain derivatives, which leads to
a multiple nodal stress points algorithm for stabilization. The resultant stabilized Lagrangian particle formulation is
a non-residual type that renders no artificial control parameters in the stabilization procedure. Subsequently, the
stabilized formulation is supplemented by an adaptive anisotropic Lagrangian kernel and a bond-based material
failure criterion to sufficiently prevent the tension instability and excessive straining problems. Several numerical
examples are presented to examine the effectiveness and accuracy of the proposed method for modeling large
strain and material failure in manufacturing processes.

1. Introduction

The advanced numerical simulation of large strain and material fail-
ure problems is in great demand for manufacturing engineers and has
become an important research topic in computational solid mechanics. It
is recognized that the Lagrangian finite element method (FEM) has strong
limitations in simulating this type of problems due to severe mesh
distortion. Although there is no mesh distortion in the Eulerian FEM, the
Eulerian approach has considerable difficulty to trace the moving inter-
face in material failure analyses because the position of a material point
relative to the Eulerian node is varying with the motion. The arbitrary
Lagrangian-Eulerian (ALE) [1] method is another mesh-based numerical
approach in which the computational system is neither attached to the
material nor prior-fixed in space. Since the computational mesh inside
the domain is moving arbitrarily to optimize the shape of elements, the
ALE algorithm is also hard to advance the moving interface accurately in
material failure analyses particularly for three-dimensional problems.

Particle methods, or sometimes called the “meshfree” methods have
attracted significant attention from scientists and engineers over the last
two decades in modeling challenging scientific and engineering prob-
lems. Specially, the Lagrangian particle methods have demonstrated their

superiority over the standard mesh-based numerical methods in large
strain [2–4], material failure [5–7] and immersed [8–10] problems.
Lagrangian particle methods were also found to be very effective on
reducing volumetric locking and shear locking in solid and structural
analyses [11–13]. Smoothed Particle Hydrodynamics (SPH) method,
initially developed by Gingold and Monaghan [14] and Lucy [15], is
commonly considered the earliest Lagrangian particle method in
computational mechanics. Despite its success in simulating the
free-surface flow and high-velocity impact problems [16–18], SPH is
known to experience several numerical instabilities, for example, the
tensile instability [19], spurious zero-energy mode [20] and excessive
straining [21] in solid mechanics applications.

Intensive research has been done to resolve some of those numerical
instabilities. For instance, the introduction of Lagrangian kernel [2,22]
and stress points method [23] have been proven to effectively remove the
tension instability in many Lagrangian particle methods, regardless of
their restricted ability to handle severe deformation. Spurious
zero-energy mode is the numerical instability caused by rank deficiency
of the particle discrete system using the direct nodal integration scheme
[20]. The approach to stabilize particle methods is fundamentally
different from finite element nodal integration methods due to the
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rational characteristic of approximation functions. Various particle sta-
bilization approaches such as the residual-type and non-residual type
stabilization methods [24–26], Stabilized Conforming Nodal Integration
(SCNI) method [27] and variationally consistent integration methods
[28,29] have been proposed to suppress the spurious zero-energy mode.
In the literature [21,30,31], the term excessive straining is commonly
applied to describe the numerical difficulty in large strain analyses when
the strictly use of the Lagrangian kernel [2] is no more applicable. The
excessive straining leads to a system of equations that ceases to become
invertible and stable. The excessive straining could combine with tension
instability and spurious zero-energy mode giving another instance of
unstable solution in Lagrangian particle methods, which is very prob-
lematic. Excessive straining also appears in material failure analysis.
Specifically, the C1-continuity assumption in most Lagrangian particle
methods is inadequate to describe the kinematic discontinuity of
displacement field in a continuous setting for failure analysis. This makes
Lagrangian particle methods challenging in material failure analysis. The
extant literature in Lagrangian particle methods [5,21,32,33] gives very
few clues about this numerical issue. There is also an ambiguity in
dealing with the interaction of particles that are damaged or failed in the
material failure analysis. Some works allow the non-physical material
self-healing (fusion) through the kernel reconstruction, while others
simply neglect the contact between failed particles. To the authors' best
knowledge, very few studies [29,34] have addressed these numerical
issues comprehensively, and satisfactory solution in large strain and
material failure analyses is not well documented numerically either.

The Smoothed Particle Galerkin (SPG) method [34] is one of the few
Lagrangian particle methods develop recently to deal with those nu-
merical instabilities in solid mechanics applications. The essence of SPG
method is to augment the standard quadratic energy functional by a
non-residual term, which leads to a stabilized variational formulation
[26] for stabilization. Another stabilized Lagrangian particle method was
proposed by Hillman and Chen [29] for the severe deformation analysis.
In their method, the strain gradient stabilization technique [35,36] was
chosen to give sufficient control on zero-energy modes. Furthermore, an
implicit gradient expansion [28] was introduced to avoid the calculation
of high-order derivatives in stabilization terms. As opposed to the con-
ventional residual-type stabilization method [24] which uses residuals of
the momentum equations and artificial control parameters to effect sta-
bilization, these new stabilization methods are considered the
penalty-based h2-stabilization formulations [26] whose purpose is to
bypass the dependence of artificial control parameters for stabilization.
In order to enable the Lagrangian kernel in severe deformation analysis,
either the semi-Lagrangian kernel [30] or the adaptive anisotropic
Lagrangian kernel [31] has been employed in these stabilized formula-
tions. In comparison to the conventional finite element method, the
integration of weak form of those new stabilization methods is still
time-consuming in small deformation applications, mainly due to the
large number of interacting particles and the inefficient neighbor sorting.
However, their robustness and accuracy in severe deformation analysis
are in general remarkably higher than the corresponding finite element
method with the same order of approximation and discretization. Aside
from superior performance in large strain analysis, the application of
those stabilized Lagrangian particle methods to material failure analysis
needs to be further investigated.

In this paper, a new stabilized Lagrangian particle method, motived
by the stabilized variational formulation [26,31] and strain gradient
stabilization technique [29,35,36], is presented for large strain and ma-
terial failure analyses. The present method of stabilization involves
multiple nodal stress points for integration but does not require specifi-
cation of a stabilization parameter. To sufficiently prevent the tension
instability and excessive straining in large strain and material failure
simulations, the proposed stabilized formulation is supplemented with
the adaptive anisotropic Lagrangian kernel [31] and the bond-based
failure criterion [34]. The rest of the paper is outlined as follows. In
Section 2, an overview on stabilized variational formulation for

stabilization is provided. In Section 3, a multiple nodal stress points algo-
rithm is described. The numerical implementation is given in Section 4.
Various numerical examples are presented in Section 5. Final remarks are
given in Section 6.

2. Overview on the stabilized variational formulation in linear
elasticity

Consider a homogeneous isotropic linear elastic material body which
occupies a bounded domain Ω in ℝ3 with Lipschitz boundary Γ. For
simplicity, the homogenous Dirichlet problem [37] is assumed in the
following variational derivation. The admissible space for the displace-
ment fields is defined by

VðΩÞ ¼ �v : vjΩ 2 H1ðΩÞ; v ¼ 0 on Γ
�

(1)

where H1ðΩÞ denotes the Sobolev space of degree one.
The general form of stabilized variational (PV) formulation for the

stabilization in particle methods reads as [26]:

ðPVÞ :

8><>:
find u 2 V such that ~ΠðuÞ ¼ inf

v2V
~ΠðvÞ

~ΠðvÞ ¼ 1
2
Aðv; vÞ þ 1

2
Qðv; vÞ � lðvÞ

(2)

In linear elasticity problem, the standard bilinear form A(.,.) and
linear functional l(.) are defined by

A : V � V→ℝ; Aðv; vÞ :¼ ∫ ΩεðvÞ : C : εðvÞdΩ (3)

l : V→ℝ; lðvÞ :¼ ∫ Ωb⋅vdΩ (4)

where b is the prescribed body force, εðvÞ is the infinitesimal strain tensor
which is a function of the displacement v, and C is the fourth-order
elasticity tensor. The bilinear form Qð:; :Þ is defined by Ref. [26].

Qðv; vÞ ¼ 1
2
∫ Ω

�
ΘεðvÞ � εðvÞ� : C :

�
ΘεðvÞ � εðvÞ�dΩ (5)

which is the stabilization term introduced to enhance the coercivity of
A(.,.). Obviously, the assumption on C guarantees that the stabilization
term Qð:; :Þ is symmetric and positive semi-definite. Mathematically, the
term Qðv; vÞ describes an interior penalty associated with the constraint
ΘεðvÞ-εðvÞ ¼ 0 where Θ : L2ðΩÞ→L2ðΩÞ is a gradient projection operator
applied to tensor εðvÞ component-wise.

For a particle distribution denoted by an index set ZI ¼ fXIgNPI¼1⊂ℝ
3,

approximating the displacement field using the meshfree approximation
gives

uhðX; tÞ ¼
X
I2ZI

φa
I ðXÞuðXI ; tÞ ¼

X
I2ZI

φa
I ðXÞ~uIðtÞ � buðX; tÞ 8X 2 Ω0 (6)

where NP is the total number of particles in discretization. φa
I ðXÞ, I¼ 1,

…, NP, can be interpreted as the Lagrangian shape functions of the
meshfree approximation for displacement field uh where the superscript
“a” denotes the radius size of φa

I ðXÞ.
In Eq. (6) ~uIðtÞ :¼ uðXI ; tÞ is called the “generalized displacement” [2]

of particle I in Galerkin meshfree method since the Kronecker-delta
property generally no longer holds in meshfree approximation. In other
words, the material displacement uhðX; tÞ is considered as an interpolant
of uðX I ; tÞ in a generalized sense. As a result, a special essential boundary
condition treatment is needed [2,38]. In order to avoid the complexity in
the enforcement of essential boundary condition, a first-order meshfree
convex approximation [39] is considered. In this study, the meshfree
convex approximation is constructed by the Generalized Meshfree
Approximation (GMF) method [39]. With the meshfree convex approx-

imation, one can define the H1
0-conforming subspace for the
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