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A B S T R A C T

Incompatible discretization methods provide added flexibility in computation by allowing meshes to be
unaligned with geometric features and easily accommodating non-interpolatory approximations. Such formu-
lations that are based on Nitsche’s approach to enforce surface constraints weakly, which shares features with
stabilized methods, combine conceptual simplicity and computational efficiency with robust performance. The
basic workings of the method are well understood, in terms of a bound on the parameter. However, its spectral
behavior has not been explored in depth. Such investigations can shed light on properties of the operator that
effect the solution of boundary-value problems. Furthermore, incompatible discretizations are rarely used for
eigenvalue problems. The spectral investigations lead to practical procedures for solving eigenvalue problems
that are formulated by Nitsche’s approach, with bearing on explicit dynamics.

1. Introduction

Incompatible discretization methods such as [1–4] accommodate
non-conforming meshes, allowing elements to be unaligned with geo-
metric features such as domain boundaries or internal interfaces, and
incorporating non-interpolatory approximations which can account for
features of the solution in the analysis. Their primary goal is to increase
the geometric flexibility of discretization schemes and to alleviate mesh-
ing related obstacles in complex and evolving configurations, tasks con-
sidered to be among the most difficult, labor intensive, and time con-
suming in finite element computation. Using these methods requires
special attention to practical issues such as conditioning [5].

At the heart of incompatible discretization lies the treatment of
surface constraints. Nitsche’s method for enforcing surface constraints
weakly, based on stabilized variational formulations, leads to efficient
procedures for embedding kinematic boundary and interface conditions
in computational meshes. Nitsche’s method was originally developed as
a variationally consistent penalty method for weakly enforcing Dirich-
let boundary conditions in second-order problems [6], but is perhaps
more constructively interpreted [7] as related to stabilized hybrid meth-
ods [8]. Nitsche’s formulation is conceptually simple and free of aux-
iliary fields, thereby reducing computational cost. Variational consis-
tency provides robust performance with respect to the value of the
method parameters, along with rational procedures to determine the
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parameters. Similar approaches were proposed for exterior acoustics
problems [9,10].

This work presents an initiatory exploration of the spectral behavior
of Nitsche’s method, and proposes procedures for solving eigenvalue
problems formed by this approach. On a given (conforming) mesh,
weak imposition of kinematic boundary conditions gives rise to addi-
tional degrees of freedom compared to the standard approach of enforc-
ing them as admissibility requirements, and hence, additional eigen-
pairs. In contrast to the eigenpairs of the standard discrete formulation,
which approximate a finite number of exact eigenpairs, the additional
ones are associated with enforcing the boundary constraints. The con-
straint eigenvalues are indefinite in the absence of stabilization. In prac-
tice, the Nitsche stabilization parameter should be defined to ensure
coercivity of the discrete operator [11,13]. It follows that the constraint
eigenvalues depend on the stabilization, raising the question whether
the physical ones do as well. Subsequent investigations show that the
constraint eigenvalues grow linearly with the stabilization, while the
physical ones are virtually constant.

As increasing constraint eigenvalues approach physical eigenvalues,
they may cross or veer. Eigenvalue veering is known (under different
names) in diverse disciplines [14,15]. It occurs typically in systems with
parameters, continuous as well as discrete. The phenomenon is charac-
terized by rapid and opposite change in curvatures. Eigenvalue veer-
ing reflects coupling of eigenfunctions, which are interchanged. In the
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veering zones, eigenfunctions of veering eigenvalues form linear combi-
nations, and the eigenpairs lack clear physical or constraint character.
This behavior is conspicuous, yet ultimately it does not impair the per-
formance of the method.

Incompatible formulations are rarely used for eigenvalue problems,
possibly due to the potential presence of constraint eigenpairs. (For
an example of spectral analysis using an incompatible method see
Ref. [16].) Removing the added degrees of freedom on the boundaries
addressed by the Nitsche formulation by algebraic elimination yields
a system that is free of the constraint eigenpairs, and hence may be
solved by any conventional eigenvalue solver. Using Irons-Guyan reduc-
tion [17,18] for this purpose is relatively inexpensive and preserves the
structure of the original formulation, to a large extent.

Practical issues related to non-conforming meshes such as potential
ill conditioning in the absence of special measures [5,19,20] are not
addressed in this initiatory investigation.

In Section 2 we present the variational formulation for the eigen-
value problem for the Laplacian using Nitsche’s method. Guided by the
Rayleigh quotient, we define a boundary quotient, show that it equals
the derivative of the eigenvalue with respect to the stabilization param-
eter, and use it to identify the constraint eigenpairs.

In Section 3 we investigate numerically the spectrum arising from
Nitsche’s formulation on conforming meshes in two sample problems.
We show that constraint eigenfunctions are mesh-dependent quantities,
restricted to the neighborhood of the Nitsche boundary. The spectrum
of a reduced system obtained by algebraic elimination contains only
physical eigenpairs, and is free of veering.

In Section 4 we propose practical procedures for solving eigenvalue
problems formulated by Nitsche’s method.

2. An eigenvalue problem for the Laplacian

Let Ω be an open, bounded region with boundary Γ. The Dirichlet
eigenvalue problem for the Laplacian Δ is

Δu + 𝜆u = 0 in Ω (2.1)

u = 0 on Γ (2.2)

The Dirichlet problem is presented for simplicity. Consideration of other
types of boundary conditions is straightforward.

The nontrivial solutions of this problem are a countably infinite
number of eigenpairs {𝜆, u}. The real, positive eigenvalues 𝜆 are con-
sidered to be ordered in ascending value.

2.1. The Nitsche formulation

Nitsche’s approach to enforce surface constraints weakly is useful for
boundary and interface conditions. We consider the eigenvalue prob-
lem for the Laplacian, with Dirichlet boundary conditions enforced by
Nitsche’s method, stated in terms of functions that are free of kinematic
admissibility requirements

a(w, u) − 𝜆(w, u) = 0 (2.3)

Here,

a(w, u) = (∇w,∇u) − (w, u,n)Γ − (w,n, u)Γ + 𝛼(w, u)Γ (2.4)

(·, ·) is the L2(Ω) inner product with subscripts denoting other domains
of integration, ∇ is the gradient, a comma is used for differentiation
with (·),n denoting the normal derivative, and 𝛼 is the stabilization
parameter. If kinematically admissible functions are used, this reduces
to the underlying standard formulation.

In the discrete settings, setting the stabilization parameter on the
element level to a value larger than the constant of a suitable discrete
trace inequality C recovers the coercivity of the standard formulation

[7] and provides good performance in practice [11–13]. This deter-
mines the recommended range of operation of the Nitsche method.

The standard discrete formulation yields a finite number of eigen-
pairs referred to as ‘physical’ since they approximate the lower eigen-
pairs of the continuous problem. The approximate eigenvalues over-
estimate the exact (positive) values. On the same (conforming) mesh,
Nitsche’s formulation has more degrees-of-freedom than the standard
formulation (on the boundary), and therefore additional eigenpairs.
These are associated with the constraints, and are not approximations
of exact eigenpairs. The constraint eigenvalues are indefinite for 𝛼 < C.
The approximate physical eigenvalues need not overestimate the exact
values.

A central goal of this work is to separate the two types of eigenpairs
that arise in the Nitsche formulation. The sign of the eigenvalues is
inadequate for this purpose since some of the constraint eigenvalues
are positive for all values of 𝛼, and all are positive for 𝛼 > C.

2.2. Parameter sensitivity

For a specific eigenpair {𝜆, u}

a(u, u) − 𝜆(u, u) = 0 (2.5)

Recall the Rayleigh quotient

(v) = a(v, v)‖v‖2 (2.6)

Here, ∥v∥ is the L2(Ω) norm, with subscripts subsequently denoting
other domains of integration. The eigenvalue is equal to the Rayleigh
quotient of the corresponding eigenfunction 𝜆 = (u). Along similar
lines, define a boundary quotient

(v) =
‖v‖2

Γ‖v‖2 (2.7)

Differentiating (2.5) with respect to 𝛼

a(u,𝛼 , u) − 𝜆(u,𝛼 , u) + ‖u‖2
Γ −

d𝜆
d𝛼

‖u‖2 + a(u, u,𝛼) − 𝜆(u, u,𝛼) = 0 (2.8)

The first two terms vanish by (2.3) (since u,𝛼 is an admissible test func-
tion) and the last two terms vanish by symmetry and (2.3). Thus the
sensitivity of an eigenvalue to the Nitsche parameter is equal to the
boundary quotient of the corresponding eigenfunction

d𝜆
d𝛼

= (u) (2.9)

It follows that

d𝜆
d𝛼

≥ 0 (2.10)

This result is in agreement with the intuitive notion of stabilization as
effective stiffness (related to the Laplacian in this case), in that increas-
ing the stabilization gives rise to higher eigenvalues. However, this
simplistic perception is impaired by the intricate eigenvalue behavior
observed in the subsequent numerical studies, identifying two types of
eigenpairs which are interchanged at times.

3. Numerical studies

The spectral features of Nitsche’s method are explored by numerical
studies in two sample problems. All of the eigenpairs are computed in
these studies of spectral behavior. For direct comparison to the stan-
dard formulation, conforming meshes are considered, namely elements
are aligned with geometric features and approximations are interpola-
tory. Subsequent numerical tests are performed on structured meshes
of bilinear Lagrange elements (C = 1/h), unless noted otherwise.
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