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A B S T R A C T

We employ a semi-analytical approach to derive new practical schemes for mass matrix computation of 8-node
and 20-node hexahedral elements. The new schemes offer accuracy equivalent to that of the conventional nu-
merical integration (quadrature rule) with a significantly smaller number of integration points. Specifically, for
the 8-node hexahedral element, we propose a 4-point rule to replace the currently used 8-point quadrature. Also,
for the 20-node hexahedral element, we propose a 4-point scheme to replace the 14-point quadrature adopted by
ANSYS and a 10-point scheme to replace the 27-point quadrature adopted by ABAQUS. In addition, we develop a
novel approach for direct computation of the inverse mass matrix of 8-node hexahedral elements. This new
approach requires a computational effort equivalent to standard numerical integration and eliminates the high
computational cost associated with matrix inversion.

1. Introduction

The demand for simulating the response of increasingly larger
structures has led to a continuous effort over the last decades to reduce
the computation time of finite-elements (FE) analyses. In parallel to the
development of faster processors and more powerful hardware, efforts
have also beenmade in developingmore efficient numerical schemes and
new element types. For example, a 10-node tetrahedral element that does
not exhibit numerical locking, even for incompressible materials, was
recently developed by Jabareen et-al [1] based on a closed-form
formulation of a Cosserat-Point Element. Other examples are the use of
symbolic computations along with code generation to reduce the
computation time of numerical integration procedures (e.g. Refs. [2–5]).
Closed form integration has also been employed in improving the effi-
ciency of stiffness-matrix calculation for specific elements, such as plane
elements [6–9], triangles [10,11], 3-D bricks [7,12], and 3-D tetrahedral
elements [11,13–17]. Other studies developed a fast method of numer-
ical quadrature for p-version finite element matrices [18], or adopted a
systematic approximation combined with closed-form integration to
obtain closed-form expressions for the natural frequencies of skewed
parallelepipeds [19].

All commercial FE packages and vast majority of FE analyses adopt a
numerical integration procedure to evaluate the mass matrices (either
consistent, lumped or in some cases their linear combination) of solid

elements. The common numerical integrator, quadrature, is based on
evaluating the integrand at carefully chosen “integration points” [20,21].
The more integration points one uses, the higher accuracy follows. In a
recent paper [22], we developed a new numerical scheme which can
replace the standard numerical quadrature in computing mass matrices
of solid elements. Similarly to the standard approach, more integration
points lead to better accuracy, and the scheme converges to the exact
mass matrix if the number of integration points is sufficiently large. In
principle, the new approach is not limited to a specific element type, but
in Ref. [22] it was specialized to the 10-node tetrahedral element. It was
shown that, compared to standard quadrature with the same number of
integration points, the new scheme significantly improves the accuracy of
the numerical integration.

In the current contribution, we specialize the approach, first pre-
sented in Ref. [22], to the 8-node and 20-node hexahedral elements. We
show that, compared to standard quadrature, the new scheme requires a
significantly smaller number of integration points in order to provide the
same level of accuracy, thus reducing the computation time. For example,
our semi-analytical (SA) 4-point rule for the 8-node brick provides ac-
curacy equivalent to that of 8-point standard quadrature (ST). Also, for
the 20-node brick, our SA 4-point and 10-point schemes provide accuracy
equivalent to that of the 14-point and 27-point standard quadrature,
respectively.

In addition, we generalize the approach of [22] to enable the direct
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computation of the inverse of the consistent mass matrix (with no need of
inversion). In particular, we are able to compute the inverse of the
consistent mass matrix with a computational effort similar to that of
calculating the consistent mass matrix itself with standard quadrature.
This unique feature has the potential to significantly improve accuracy
and computation time in dynamic analysis, especially in cases where
coarse-mesh elements are present. For example, in explicit dynamic
analysis, lumped (diagonal) mass matrix is used in order to reduce the
cost associated with solving a coupled set of equations. However, in some
problems, diagonal mass matrices may introduce substantial errors [23].
It has been shown [24,25] that accuracy can be significantly improved
while maintaining a reasonable computational cost by combining the use
of the consistent mass matrix in highly deformed (or coarse mesh) re-
gions with calculations based on an element-by-element technique [26],
where the elements inverse mass matrices are employed instead of global
assembly of the mass matrix. In Ref. [27] the element inversemass matrix
was approximated by an iterative scheme, in Ref. [25] the method of
localized Lagrange multipliers was adopted, while a vibrational con-
struction was considered in Ref. [28]. The direct computation of the
element inverse mass matrix presented here can significantly reduce the
computational cost associated with this step.

Following the above, the paper is organized as follows: Section 2
recalls the main theoretical considerations and mathematical formula-
tion of the semi-analytical (SA) and optimization-based (OB) approaches.
The latter is used for the direct computation of the element inverse mass
matrix. Section 3 gives details, namely ansatz functions, integration
points, and the coefficients matrices (generalized weights), to formulate
specific ready-to-implement SA integration schemes for the 8-node and

20-node brick elements. Section 4 presents the details to formulate the
OB scheme for the 8-node brick element. Numerical results, that examine
the accuracy of the SA and the OB schemes, are presented in Section 5.
Main conclusions are discussed in Section 6.

2. Theoretical considerations and background

In this section, we briefly recall the basic concepts and considerations
behind the “semi analytical” (SA) method, first presented in Ref. [22], for
calculating the element mass matrix. In addition, we present a new
approach that enables direct calculation of the element inverse mass
matrix. As discussed below, the computational effort of these schemes is
equivalent to that of the conventional/standard rule for the same number
of integration points.

The consistent mass matrix of a solid finite element having nnodes
nodes with shape functions Ni; i ¼ 1; ::;nnodes, initial density and volume
ρ0 and V , respectively, is defined as Mij ¼ ∫

V
NiNjρ0dV. In terms of local

element coordinates ξ; η; ζ, it follows that

Mij ¼ ∫
V
NiNjðρ0JÞdξdηdζ; (1)

where J is the metric (or Jacobian) of global to the local coordinate
transformation [29]. Typically, this integral is numerically calculated by
a standard (ST) numerical integration scheme which is based on evalu-
ating the integrand at some carefully chosen “integration points”, i.e.
Mij � MST

ij ¼ Pnp
p¼1wpNipNjpρ0pJp. Here, np denotes the number of inte-

gration points, wp are corresponding weights, and Nip; ρ0p; Jp represent

Fig. 1. Generating the learning set for the 8-
node hexahedral element. (a) parent
element. Relocation of nodes by random
number is illustrated using arrows (several
arrows are omitted for clarity). (b,c,d) ex-
amples of elements with δ ¼ 0:16;0:83;1:0,
respectively.
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