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A B S T R A C T

In this study, we address the computational modeling of biological soft tissue growth, focusing on the develop-
ment of epithelial tissues. The formulation of the corresponding constitutive growth law using non-linear con-
tinuum mechanics and its implementation within a total-Lagrangian-type finite element method are described.
In describing the growth law, we use multiplicative decomposition of the deformation gradient into a growth
part and an elastic part. We propose two surface growth deformation gradients; isotropic surface growth and
anisotropic surface growth with relative shrinkage in the principal direction of maximum stress at the initial
state. We first apply our laws to a hollow thick-walled hemiellipsoid that idealizes a structure generally observed
in the early development of epithelial tissues. Our simulation shows the following: (i) under isotropic surface
growth, the hemiellipsoid becomes sphere-like, i.e., the ratio between the longest and shortest axial length tends
to 1; (ii) in contrast, under anisotropic surface growth, the tissue elongates and flattens, i.e., the ratio between
the longest and shortest axial length is enhanced. These results motivate us to apply the latter growth law to the
realistic example of a vertebrate limb bud, which shows similar elongation and flattening during development.
As expected, our numerical simulation succeeded in reproducing the essential aspects of morphological change
in the limb bud, providing a new hypothesis for the vertebrate limb development.

1. Introduction

Biological tissues are continuously undergoing processes of growth,
remodeling and morphogenesis. These processes include the addi-
tion/subtraction of mass through the cell growth and death, active
deformation via cell rearrangement, and changes in mechanical proper-
ties in response to surrounding mechano-chemical environments [1–3].
While such processes are not generally observed in engineering mate-
rials, they often characterize the mechanical behavior of biological tis-
sues. By undergoing growth, remodeling and morphogenesis, biological
tissues can appropriately achieve their specific shapes and functions.

The past two decades have seen a considerable amount of biome-
chanical research concerning growth, remodeling and morphogenesis
[1,3–5]. Among these processes, soft tissue growth has attracted much
attention from researchers of many different subject areas. First, this
interest can be attributed to the availability of new information per-
taining to the mechanical aspects of biological soft tissues resulting
from advances in measurement techniques. Second, increasing comput-
ing power, which enables more realistic simulations, has made such
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a complicated nonlinear problem more accessible. From a mechan-
ical perspective, a continuum mechanics approach has been widely
adopted for the analysis of soft tissue growth; the main issue being
how to formulate the constitutive law of growth. In constructing the
constitutive law, growth is characterized as the addition/subtraction
of mass by multiplicative decomposition of the deformation gradient
into a growth part and an elastic part [6], as introduced in the con-
text of the finite-strain elastoplasticity theory [7,8]. While the multi-
plicative decomposition of the deformation gradient has become a stan-
dard approach to growth modeling, identifying the appropriate types
of growth deformation gradients suitable for focal phenomena is not
an easy task. Due to the complicated molecular and cellular responses
which affect growth, there has been no agreement on which mechan-
ical variables, such as stress or strain, are suitable for modeling this
growth [1,3]. At present, the continuum mechanical approach to the
study of growth is at the stage in which constitutive laws that could
explain individual growth process in each species or tissue can be pro-
posed and demonstrated. Until now, the growth of various types of
mature soft tissues, such as the arterial wall, skin, heart, and mus-
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cle, have been studied and appropriate constitutive laws have been
established based on continuum mechanics and numerical analysis
[9–16].

In contrast, compared to the mechanical study of growth in mature
soft tissues, the mechanical study of embryonic tissue development,
as another example of growth, is a relatively young field. The lim-
ited research in this area might be attributed to the complexities of
developing tissues. Unlike the growth of mature soft tissues, such as
the enlargement (hypertrophy) of arterial walls and cardiac muscles
or, the formation of tumors (tumorigenesis), developing tissues grow
in such a way that they build highly reproducible morphologies spe-
cific to the corresponding organs such as the limbs, brain and intes-
tine. Thus far, in mechanical studies of the developing tissues, insta-
bility and buckling analysis has been a hot issue. For example, the
patterns of the brain gyri, the gastrulation process, and the develop-
ment of periodic looping structures such as the intestine have been
simulated based on the buckling of hyperelastic materials [17–19].
Such simulations have succeeded in reproducing similar morphologies
to those observed during development. In addition to the morphologi-
cal change primarily driven by external load or determined by bound-
ary conditions, recent observations of developing tissues have shown
that most cells are more or less motile and frequently change their
relative position. This is especially true in the development of epithe-
lial tissues, where this behavior is known as cell rearrangement or
intercalation. Moreover, experimental studies have suggested a rela-
tionship between such cellular behaviors and the stress within tissues
[20,21].

Based on these background studies, here, we examine the effects
of stress-dependent active and anisotropic growth on the morphol-
ogy of developing tissues. In describing the growth law, i.e., con-
stitutive growth law, we assume that cell rearrangement actively
occurs within a preferable direction determined by the directions
of principal stresses. As an example, we apply our proposed law
to a hollow thick-walled hemiellipsoid which is an idealized struc-
ture generally observed in the early development of epitherlal tis-
sues. Under this law, we show that the hemiellipsoid elongates
along its semi-major axis and collapses along its semi-minor axis,
which leads to the elongation and oblateness of the epithelial
tissue.

As a realistic biological application, we apply this law to the early
development of the chick limb bud which is characterized by the struc-
tural change described above, i.e., the elongation along one axis and
flattening along another axis. To illustrate the mechanism of how the
limb bud elongates, researchers have proposed several hypotheses espe-
cially focused on the spatially-biased growth of its inner component
(the mesenchyme), enveloped by its outer component (the epithelium)
[22,23]. However, it has been shown that the mesenchymally-biased-
growth model can not fully explain the observed, in that the quanti-
fied deformation pattern that occurs during chick limb development
is quite different from the pattern expected based on the model (see
Refs. [24,25] for more details). Given the above considerations, here
we focus on the growth of the epithelium that previously has received
little attention as a determining component in limb-specific morpho-
genesis.

For the methodology, we adopt the multiplicative decompo-
sition of the deformation gradient similar to that used in pre-
vious works on mature soft tissues [26,27]. We formulate two
growth deformation gradient tensors and simulate the phenomena
using the finite element method (FEM). The corresponding con-
stitutive initial/boundary-value problem is formulated to be suit-
able for the conventional total-Lagrangian-type FEM and the com-
prehensive description of this methodology is detailed in a general
setting.

2. Methods I: constitutive law for the growth

Throughout this paper, the term growth is defined as the process by
which a material changes actively in form with the addition/subtraction
of mass without changing its mechanical properties. In this section, a
constitutive law for the growth is formulated in the framework of con-
tinuum mechanics.

2.1. Kinematics

Let the position of the material point in the initial configura-
tion Ω0 ⊂ ℝ3 be X, the position of the same point at time t in the
current configuration Ω ⊂ ℝ3 be x, and the displacement vector be
u = x − X. We assume a deformation mapping 𝜑(·, t) ∶ Ω0 → Ω that
is smooth enough, orientation preserving, and bijective at any time t
such that x = 𝜑(X, t). At each material point X and time t, the defor-
mation gradient tensor F with Jacobian J ≔ det F > 0 is then defined
as F ≔ 𝜕𝜑(X, t)∕𝜕X. As strain measures, we use the right Cauchy-Green
strain tensor C defined as C ≔ FTF.

2.2. Multiplicative decomposition of deformation gradient tensor

As shown in Fig. 1, the deformation mapping 𝜑 of the growth can
be decomposed into two parts, as introduced in the context of finite-
strain elastoplasticity theory [7,8]. Firstly, every material point either
increases or decreases. This increasing/decreasing part of the deforma-
tion mapping 𝜑g , called growth deformation, results in an interme-
diate configuration Ω̂ that does not necessarily have to be compat-
ible, i.e., parts of the material may intersect or separate. Hence, an
additional elastic deformation mapping 𝜑e, called elastic deformation,
might be needed to ensure the compatibility of the deformation 𝜑. In
this way, the deformation mapping is decomposed into two mappings
and described as 𝜑 = 𝜑e ◦ 𝜑g . Analogously, the deformation gradient
tensor F of Ω0 onto Ω is decomposed into two components as

F = FeFg , (2.1)

where Fg and Fe are the growth deformation gradient and elastic defor-
mation gradient, respectively. In this decomposition, we assume that
the growth deformation 𝜑g occurs without generating stresses, and
therefore the intermediate configuration Ω̂ is stress free. Furthermore,
during this growth deformation, the mass density is assumed to be
unchanged. In other words, the mass density of the intermediate con-
figuration is the same as that of the initial configuration, namely 𝜌0(X).
However, the mass density 𝜌(x, t) of the current configuration Ω may
change during the elastic deformation 𝜑e, because we do not assume
that the material is incompressible, i.e., 𝜌0(X) ≠ 𝜌(x, t).

Fig. 1. Decomposition of deformation mapping 𝜑 and deformation gradient F into a
growth part and an elastic part.
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