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A B S T R A C T

Compatibility between element technology featuring assumed (finite)-strains based on least-squares and cur-
rent constitutive formulations employed in elastic and inelastic contexts is a demanding task. Local frames are
required for anisotropic and cohesive laws, some assumed-strain element technologies do not explicitly provide
the deformation gradient, and total Lagrangian approaches are often inadequate for advanced plasticity models.
Kirchhoff stress-based Fe Fp decompositions are also not convenient for ductile damage models. In addition, if
rotational degrees-of-freedom are used, as is the case in beams and shells, the adoption of a fixed undeformed
configuration causes implementation brittleness. An additional aspect to consider is remeshing by element par-
titioning, which precludes the storage of constitutive tensors in local frames, invalidating the stored quantities.
Based on seven algorithmic requirements and the corresponding design solutions, we introduce a general consti-
tutive updating algorithm based on the strain and the Jacobian provided by the element. This allows the use of
virtually any constitutive law with any finite-strain element formulation while satisfying the seven requirements.
In addition, Newton-Raphson convergence properties are extraordinary, at the cost of precision in the strain rate
estimation. As a prototype element implementation, we present a stable hexahedron based on least-squares
strains. A BFGS secant estimation is employed for the weight in the least-squares so that softening constitutive
laws can be adopted without stability issues at the element level.

1. Introduction

Our recent element partition algorithm [5] introduced an additional
requirement to the constitutive updating which is the storage in a
common frame of the relevant constitutive tensors. This requirement
and the use of continuum formulations that can include as particular
case cohesive elements [7] are here addressed. The new approach
is based on the reference configuration Jacobian and the relative
Green-Lagrange strain. The reference configuration frame is now
indirectly obtained from the Jacobian, as is the rotation tensor and the
deformation gradient.

In addition, high performance element technology for low-order dis-
cretizations (the so-called high-coarse mesh performance elements) is
often based on assumed strains [13] and can become unstable when the
constitutive models involve strain softening. EAS formulations [34–36]
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have known stability problems which are seriously aggravated by con-
stitutive softening.

Assumed-strain and enhanced strain elements can be formulated in
terms of the deformation gradient [34] or, in alternative, the Green-
Lagrange strain [1,17]. Of course from the latter it is impossible in gen-
eral to obtain the former, since the rotation tensor is missing from the
assumed strain tensor. Hence, although polar-decomposition is possible
from a non-assumed strain version, this is incompatible with the Green-
Lagrange strain. Betsch and Stein state this in clear and direct terms:
“Assumed strain elements usually provide the Green-Lagrangian strain ten-
sor (or equivalently the right Cauchy-Green tensor) whereas the deformation
gradient is not given. On the other hand, previously published constitutive
algorithms based on the multiplicative decomposition of the deformation gra-
dient into elastic and plastic parts usually require the deformation gradient
as input,…” [14].
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Constitutive constraints (such as incompressibility, plane stress and
zero normal stress in shells) are also dependent on specific element for-
mulations, see Refs. [8,10,11]. Unless a unified approach is developed,
calculations become very intricate without approximations. Besides the
inevitable duplication of effort, these incompatibilities are error-prone
and produce code maintenance difficulties. To unify the frame deter-
mination problem and the polar decomposition (which is necessary in
purely assumed-strain elements) we use Löwdin [27] frames. These
provide a moving orthogonal local frame-of-reference. By multiplica-
tion of two frames (with a transpose), a rotation tensor (in essence an
estimate of the polar-decomposition rotation which is not available)
is obtained. Therefore, continuum and structural finite-strain elements
are accounted with our algorithm. We use a semi-implicit approach:
rotation tensors are integrated explicitly and quadratic strains are inte-
grated implicitly. This allows (at the cost of some measured loss of
accuracy) the use of a comparatively small number of steps for intricate
nonlinear problems. As few as 2 load steps can be used for the Simo 3D
tension test.

This work is organized as follows: Section 2 presents the seven
requirements, the relative kinematic decomposition and the constitu-
tive updating, including an upper bound on the error in the estimation
of the strain rate. The full Algorithm is described in detail. Section 3
shows the prototype element (a least-squares assumed-strain hexahe-
dron) and Section 4 presents the numerical examples. Finally, Section
5 presents the conclusions.

2. Specific kinematics and constitutive updating

2.1. Requirements

The goal of generality in this contribution, namely compatibility
between finite-strain constitutive laws and mixed element (in particular
plane stress/strain, 3D and shell) formulations, as well as experience in
computational nonlinear solid mechanics, led the Authors to introduce
the following seven requirements for constitutive updating:

1. Constitutive updating must comply with the geometric requisites of
anisotropic constitutive laws (both ab-initio and induced). Specifi-
cally, both locally defined and global frames-of-reference must be
available [3]. This also applies to continuum-based cohesive law for-
mulations, cf [6,7].

2. Constitutive updating must be compatible, by removal of rows in
stress and/or strain Voigt forms, with local constitutive constraints
such as zero-normal-stress, plane stress and inextensibility [6,8].

3. Constitutive updating must be compatible with both hyperelastic
and incremental (or rate-based) constitutive laws, such as inelas-
tic constitutive models [2]. Sensitivity of the stress with respect to
strain must be exact and straightforward.

4. Constitutive updating should allow the use of purely assumed-strain
elements (e.g. Refs. [1,17]) for which a compatible deformation gra-
dient may not be available or might be computationally costly. This
important issue was discussed in the seminal paper by Betsch and
Stein [14].

5. Cauchy stresses, or a sufficiently good approximation, must be used
so that yield functions are accurately represented. This has been
discussed in Ref. [2]. For quasi-incompressible materials the Kirch-
hoff stress could be used (as in Refs. [33–35]), but many consti-
tutive laws involve significant volume change [9] for which the
use of the Kirchhoff stress might be inadequate. This important
topic has already been the subject of discussion by Meschke and
Liu [30] who used the spectral decomposition of the right stretch
tensor.

6. Only relative degrees-of-freedom should be required, which in
degenerate shell versions of elements would make use of relative
rotations [2]. Quaternion parameterization avoid this, but introduce
additional housekeeping tasks. A discussion of this theme, including

the use of intermediate configurations, is performed in Ref. [16].
7. History variables, such as accumulated strain and stress in config-

uration Ωb must use frame 0 so that remeshing by partitioning [5]
can be directly performed when local frames change.

These seven requirements are the cause of the following design solu-
tions:

• Requirements 1. and 2. impose the use of a local frame which fol-
lows each element motion. Rotation must be compatible with local
frame rotations.

• Requirement 2. enforces special significance to the directions of a
local frame. For example, in solid-shell variants of 3D elements [4],
direction 3 is attributed to the thickness. Although this could be
explicitly tailored a the element level, the parent-domain coordi-
nates (here identified by 𝝃) have traditionally been related to these
special directions. In shells, for example, 𝜉3 is usually used for the
thickness direction, and in beams 𝜉3 is used for the longitudinal
direction. We therefore make use of this pre-existing convention to
adopt the parent-domain Jacobian matrix J as a constitutive quan-
tity.

• Requirement 3. prevents the use of corotational or hypoelastic tech-
niques since they are incompatible with hyperelasticity. It also
forces the use of a deformed configuration in which the strain rate
is straightforwardly defined. The calculation of stress sensitivity can
be performed exactly without the presence of rotation derivatives.

• Requirement 4. enforces a constitutive updating that relies exclu-
sively on the relative Green-Lagrange strain between two configu-
rations Ωb and Ωa, here denoted eab, and a frame for configuration
Ωb, which is here established using the orthogonal tensor R0b. R0b
relates the frame b with a fixed basis in the undeformed configura-
tion.

• Requirement 5. can be addressed by an approximation to the Cauchy
stress, here introduced as the relative second Piola-Kirchhoff stress
between configurations Ωb and Ωa. This relative stress is identified
as Sab.

• Requirement 6. enforces the use of step-wise configurations, where
the reference configuration corresponds to a converged solution.
This allows the use of relative degrees-of-freedom between current and
converged (or previous) configurations, avoiding rotation condition
problems.

• Requirement 7. requires the use of storage of tensors in the initial
frame. Since the local frame is defined by R0b, transformation back-
and-forth between frames 0 and b is necessary for an efficient imple-
mentation of partition-based remeshing algorithms, see Ref. [5].

When these design solutions are adopted, we achieve the follow-
ing: our general constitutive updating must be based on the Jacobian
matrix and the relative Green-Lagrange, both provided by the element
calculations.

2.2. Frames obtained by SVD of the Jacobians

Unique frames are useful in most elements dealing with finite strain,
especially when anisotropic and complex constitutive laws are required.
Even with isotropic elements, certain constraints can take advantage of
local frames. A change in frame-of-reference can be defined by multipli-
cation of two matrices containing the frame basis vectors as columns.
This provides the rotation. Consider two configurations1 Ωa and Ωb
identified by time instances ta and tb such that ta ≥ tb. The initial con-
figuration (t = 0) is denoted Ω0. Let the positions of a given point X in
configurations Ωa and Ωb be xa(𝝃, ta) ∈ Ωa and xb(𝝃, tb) ∈ Ωb, respec-
tively. Considering only one element, parent-domain coordinates 𝝃 are

1 We use standard notation in continuum mechanics [39]. Configurations are assumed
to possess attached frames.
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