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Locking-free isogeometric formulations of 3-D curved Timoshenko beams are studied. In particular, the global B
projection method and a mixed formulation are examined and compared, showing equivalently optimal
convergence with regard to displacement solutions. These two formulations are proved to be equal when the
beam cross-sectional properties are uniform. For beams with non-uniform cross-sectional properties, the mixed
formulation is superior in terms of stress recovery. In addition to these two methods, an alternative locking-free
formulation, a C° NURBS element with selectively reduced integration is suggested in this study, making use of

the traditional selective reduced integration (SRI) rule designed for Lagrangian elements. This SRI C° NURBS
element is simple to implement, preserves the sparsity of the global stiffness matrix and requires fewer quadrature
point evaluations. Most importantly, due to the use of NURBS basis functions, the exact curve geometry is pre-
served with all three locking-free isogeometric elements. Benchmark problems and illustrative examples with
complex curved geometries are examined for a detailed investigation of the considered locking-free elements.

1. Introduction

Modeling of curved beams is an important topic that has been
addressed by many studies in the past [1-3]. Geometries of curved beams
in a computer aided design (CAD) environment are usually modeled by
B-splines or Non-Uniform Rational B-Splines (NURBS). On the other
hand, these geometries are approximated by linear or quadratic elements
in standard finite element analysis (FEA). Such a representation is
approximate, however, as curvature and torsion of complex 3-D beams
cannot be exactly represented by linear or quadratic elements. To bridge
the gap between CAD and FEA, Hughes et al. [4] proposed isogeometric
analysis (IGA) wherein the exact geometrical forms from CAD can be
preserved in analysis models. This feature of IGA has been shown to
improve the accuracy of the numerical simulations in the previous
studies [5-7]. Besides, the increased smoothness of higher order NURBS
bases has also been explored in the literature and shown to be useful for
higher order theories that requires high continuity [8-10]. In a previous
study [11], an isogeometric 3-D curved Timoshenko beam of arbitrary
shape has been proposed, showing the promise of using IGA for the
analysis of curved structural components with arbitrarily complex ge-
ometries. Similar to the classical Lagrangian finite element, however, the
NURBS elements are prone to shear and membrane locking when the
beam becomes slender and the curvature of the beam centroid curve
becomes large. Shear and membrane locking appear due to the inability
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of the interpolation functions to represent the cases of shearless bending
and inextensible bending. As shown in Refs. [11,12], higher-order
NURBS bases help to alleviate locking without any difficulties because
of the fact that higher order NURBS bases are stable due to their varia-
tional diminishing property, which is not the case for Lagrangian bases.
Although higher-order NURBS curves can be generated through
p-refinement or k-refinement in a robust and efficient way, the use of
higher order basis functions inevitably increases the computational cost
as the number of quadrature points and the bandwidth of the stiffness
matrix are both increased. Furthermore, higher order bases cannot
eliminate locking completely, as demonstrated in Refs. [11,13]. Thus,
there is a need for the development of locking-free NURBS elements.
Various methodologies exist in the literature for alleviating locking in
standard finite elements, including selective reduced integration [14],
B-bar projection [15], the discrete strain gap method [16,17], mixed
formulations [1,18], and discontinuous Galerkin methods [19], among
others. Some of these ideas have been successfully extended to iso-
geometric analysis, for example in Ref. [20] where a selective reduced
integration (SRI) rule was proposed for the elimination of both shear and
membrane locking in planar curved Timoshenko beams with up to
2"_order NURBS basis functions. This SRI rule for IGA, however, becomes
rather complex when considering higher order basis functions with
non-uniform inter-element continuity. When considering only uniform
inter-element continuity within one patch, Adam et al. [13] extended the
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SRI rule to higher order NURBS bases. This assumption can be rather
restrictive as curves with varying smoothness are rather common in real
engineering practices. The so-called discrete strain gap (DSG) method was
also extended to IGA by Echter et al. [12] for eliminating shear locking in
straight Timoshenko beam elements. When applied to curved beam ele-
ments, however, this approach shows less accuracy as compared to other
methods such as SRI and B-bar projection [20]. Moreover, this method
also requires the inversion of a fully-populated global stiffness matrix,
increasing the computational cost as compared to SRI.

Compared to the aforementioned SRI and DSG methods, the B-bar
projection method has been shown to be more general and robust in
handling locking for problems with various NURBS formulations [20].
The B-bar projection method was introduced for IGA by Elgued; et al.
[21] to address volumetric locking and later applied to planar curved
Timoshenko beam elements by Bouclier et al. [20] to alleviate shear and
membrane locking. By projecting the membrane and shear strains onto a
space spanned by B-spline basis functions of one order lower than the
solution space, this method can completely eliminate locking phenom-
ena. However, this method again results in a fully populated stiffness
matrix, precluding the use of sparse solvers and thus increasing the
computational burden. In an attempt to employ the generality and
robustness of the B-bar projection method while also reducing the
computational cost of inverting a fully-populated matrix, a local B-bar
projection method was proposed [22]. This method carries out projection
at the element level instead of at the patch level and was extended to
curved Timoshenko beam elements by Miao et al. [23] to address
membrane and shear locking problems. While the sparsity of the stiffness
matrix is preserved with this method, the uniform convergence exhibited
by the global projection method may be lost and locking phenomena may
still be exhibited with coarse meshes [23]. It should be mentioned that a
similar local B projection approach has been used in Refs. [24,25] to
eliminate membrane locking in Kirchhoff beams and Kirchhoff-Love
shells. An alternative local projection strategy was proposed by Hu
et al. [26], and though the results presented therein are promising,
specific rules for the selection of the projection spaces for NURBS bases
with varying inter-element continuity are not obvious.

As an alternative way of formulating locking-free finite elements,
mixed methods have been utilized successfully with standard finite ele-
ments [1]. For C° Lagrangian elements, the stress (or force) fields are
interpolated independently using a space spanned by bases of one order
lower. Due to the discontinuity of this space, the stress field can be elim-
inated at the element level and a global displacement-based formulation is
recovered. For IGA, this elimination can only be done at the patch level
due to the increased inter-element continuity. This results in a
fully-populated stiffness matrix in the same way as for the B-bar projection
method. In fact, the two methods were shown to be equivalent for two 2-D
case [20]. In addition to Galerkin formulations, collocation methods have
also been combined with mixed element formulations to alleviate locking
phenomena in IGA. By choosing Greville abscissae as the collocation
points, this combination was shown to be efficient in addressing shear
locking in straight beam elements [27] and both shear and membrane
locking in spatially curved beam elements [28]. Among locking-free for-
mulations utilizing the Galerkin method, the global B-bar projection and
mixed element formulations share perhaps the highest accuracy per de-
gree of freedom, and so are preferred despite the computational cost of
inverting fully populated matrices. Although the SRI method in Ref. [20]
preserves high accuracy with relatively low computational cost (due to the
sparsity of the stiffness matrix), it is based on complicated rules to deal
with varying inter-element continuity for higher order NURBS bases, and
so is less desirable. It is also noted that in the studies by Ishaquddin et al.
[29,301, two new locking phenomena - flexure locking and torsion locking
- were recognized and addressed. Flexure locking occurs when the flexural
stiffness is far greater than the torsional stiffness, i.e. EI > GJ, and is due
to the inability of the numerical solution in capturing flexureless torsion
[31]. Torsion locking, on the other hand, is manifested in the case of
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GJ > EI, which is due to the inability of solution spaces in representing
torsionless flexure. For curved beams with regular cross-section shapes
and usual engineering materials, these two cases rarely occur, however.
Thus, these two locking cases are not considered in the present study.
This study aims to examine and compare the global B-bar projection
method and a mixed formulation for addressing locking in 3-D curved
Timoshenko beam elements, with a detailed discussion on the choice of
projection space and mixed interpolation space. These two methods are
shown to be equal under certain conditions. Moreover, for beams with
non-uniform cross-sectional properties, the mixed formulation is shown
to be superior for stress recovery. As an alternative way to address
locking in 3-D curved beam elements, a C° NURBS element with selec-
tively reduced integration is presented. This element—though of lower
accuracy per degree of freedom than the B-bar projection and mixed
formulations—is simple to implement, preserves the sparsity of the
stiffness matrix and requires fewer quadrature point evaluations. The
outline of the paper is as follows: In Section 2, the curved Timoshenko
beam theory is presented and in Section 3 a brief review of IGA is pro-
vided. Three locking-free NURBS element formulations are discussed in
Section 4. In Section 5, four numerical examples are used to evaluate and
compare the performance of the three locking-free formulations.
Important conclusions of this study are presented in Section 6.

2. Curved Timoshenko beam theory
2.1. Frenet-Serret bases

The theoretical framework for 3-D curved beams is based on the
differential geometry of curves embedded in R®. Thus, provided that the
centroid line of beam cross-sections is continuously differentiable, it can
be represented by a local orthonormal bases called the Frenet-Serret
bases. Let r(s): [0,L]->R> be an arbitrary continuously differentiable
curve embedded in R® and parameterized by an arc-length parameter s.
The Frenet-Serret bases consist of the orthonormal vector triad {t,n,b}
(Fig. 1) where the tangent vector to the curve t, the normal vector n and
the binormal vector b are calculated as
d*r(s
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Finally, the derivatives of the Frenet-Serret bases can be expressed using
the Frenet-Serret formula [32], i.e.,
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Let ¢ = ¢t + p,n+ @,b be a smooth vector field represented in the
Frenet-Serret bases. Using the chain rule, the derivative of this field with
respect to the arc-length parameter can be expressed as
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2.2. Equilibrium equations
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For a 3-D curved Timoshenko beam expressed in the Frenet-Serret
bases, the internal force vector Q and moment vector M are
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