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A B S T R A C T

This paper deals with certain aspects related to the dynamic behaviour of isotropic shell-like structures analysed
by the use of a higher order transversely deformable shell-type spectral finite element newly formulated and the
approach known as the Time-domain Spectral Finite Element Method (TD-SFEM). Although recently this spectral
approach is reported in the literature as a very powerful numerical tool used to solve various wave propagation
problems, its properties make it also very well suited to solve static and dynamic modal problems. The robustness
and effectiveness of the current spectral approach has been successfully demonstrated by the authors in the case
of thin-walled spherical shell structures through a series of numerical tests comprising the analysis of natural
frequencies and modes of vibration of an isotropic spherical shell as well as the wave propagation analysis in the
case of the same spherical shell and a half-pipe shell-like structure.

1. Introduction

Investigation, modelling and analysis of wave propagation in shell-
like structures have been the subject of scientific interest for many years
[1–3]. As a result, during that time various continuous [4–8] and dis-
crete models [9–11] were developed and tested by many authors.

However, the main problem related to continuous models is that
they are usually restricted to structures of simple geometries and bound-
ary conditions, as well as homogeneous material properties. In con-
trast, discrete models can be easily employed to investigate structures
of complex geometries and boundary conditions or material properties.
Nevertheless, discrete models, in the case of wave propagation prob-
lems, need proper spatial discretisation. Among many discrete methods,
which are often applied for wave propagation modelling and analysis,
the Spectral Finite Element Method (SFEM) appears as an effective and
powerful tool [12]. However, it should be remembered that two dif-
ferent spectral approaches exist in the literature. The first is called the
Frequency-domain Spectral Finite Element Method (FD-SFEM) and was
originally proposed by Doyle [13,14] and later developed by Gopalakr-
ishnan [15,16]. The second approach, proposed by Patera [17], is called
the Time-domain Spectral Element Method (TD-SFEM). In the case of
two-dimensional (2-D) or three-dimensional problems (3-D) the time-
domain formulation of SFEM is much more effective than the frequency-
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domain formulation of the method.
In fact TD-SFEM is very similar to the well-known Finite Element

Method (FEM). The main difference between them comes from the fact
that TD-SFEM employs elemental shape functions based on Lobatto or
Chebyshev approximation polynomials with elemental nodes located at
points, which are the roots of these polynomials. As a consequence the
nodes are not equidistant. Additionally, thanks to the orthogonality of
the approximation polynomials elemental inertia matrices are diagonal
in the case of Lobatto polynomials, or almost diagonal in the case of
Chebyshev polynomials. Such forms of elemental inertia matrices allow
for the application of more effective and accurate as well as less time
consuming techniques to integrate the equations of motion.

In this paper a new multi-mode formulation of a higher order trans-
versely deformable shell-type spectral finite element (SFE) for dynamic
analysis of isotropic structures is presented and analysed. The accuracy
of the formulation proposed is assessed by comparison of dispersion
curves obtained for the current model with dispersion curves obtained
for exact solutions of the problem as well as comparison with shell the-
ories well-known from the literature.

Finally, in order to demonstrate the effectiveness of the current for-
mulation of a higher order transversely deformable shell-type SFE a
series of numerical tests were performed. These comprised the analysis
of natural frequencies and modes of vibration of an isotropic spheri-
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Fig. 1. A shell SFE in the local xyz and global XYZ coordinate systems.

cal shell as well as the wave propagation analysis in the case of the
same spherical shell and a half-pipe shell-like structure. Thanks to this,
appropriate conclusions were formulated as a general guidance for the
application of the current element and solution techniques in the case
of various dynamic problems.

2. Shell element formulation

2.1. Displacement field

In comparison to classical shell theories the current formulation of
a higher order transversely deformable shell-type SFE takes advantage
of an extended form of the displacement field. According to this formu-
lation the element has six degrees of freedom and takes into account
the transverse deformation of the element. This feature of the element
becomes very important, when high frequency dynamic responses are
to be studied [11]. The shell element under investigation is presented
in Fig. 1.

Additional displacement terms of the element displacement field
represent higher-order terms of the field expansion into the Maclau-
rin series. They can be evaluated thanks to the application of the zero-
traction boundary conditions for 𝜏yz, 𝜏zx as well as 𝜎zz stress compo-
nents on the lower and upper surfaces of the element [1–3], in a sim-
ilar manner as shown in Ref. [18]. Following the same approach as
used in Refs. [19,20] the displacement field of the current shell element
may be represented, in the local coordinate system of the element xyz,
as:

u = 𝜙0 + a𝜁𝜙1 + (1 − 𝜁2)𝜙2 + a𝜁 (1 − 𝜁2)𝜙3

v = 𝜓0 + a𝜁𝜓1 + (1 − 𝜁2)𝜓2 + a𝜁 (1 − 𝜁2)𝜓3

w = 𝜃0 + a𝜁𝜃1 + (1 − 𝜁2)𝜃2 + a𝜁 (1 − 𝜁2)𝜃3

(1)

where symbols 𝜁 and a are defined by relations z = a𝜁 and h = 2a, while
h is the thickness of the element.

It should be noted that the displacement components 𝜙i(i = 0,… , 3),
𝜓i(i = 0,… ,3) and 𝜃i(i = 0,… , 3), remain certain unknown functions of
the spatial coordinates x and y defined at the mid-plane of the ele-
ment. They can be associated with either symmetric (membrane) or
anti-symmetric (bending) behaviour of the element. In the case of the
symmetric (membrane) behaviour these are the in-plane displacement
functions 𝜙i(i = 0,2) and 𝜓i(i = 0, 2) as well as the transverse displace-
ment functions 𝜃i(i = 1, 3). On the other hand the anti-symmetric (bend-
ing) behaviour is associated with the remaining in-plane displacement
functions 𝜙i(i = 1,3) and 𝜓i(i = 1, 3) as well as the transverse displace-
ment functions 𝜃i(i = 0, 2).

As mentioned earlier the application of the zero-traction boundary
conditions for 𝜏yz, 𝜏zx as well as 𝜎zz stress components on the upper and
lower surfaces of the element enables one to reduce the total number
of unknown functions (element degrees of freedom) from eight to six.

This leads to certain relations for the higher-order terms 𝜙i(i = 2, 3),
𝜓i(i = 2, 3) and 𝜃i(i = 2, 3), which can be expressed as dependent on
the remaining lower order terms 𝜙i(i = 0,1), 𝜓i(i = 0,1) and 𝜃i(i = 0, 1)
for the symmetric and anti-symmetric displacement components:

• for symmetric (membrane) behaviour:

2𝜙2 = a2𝜕x𝜃1

2𝜓2 = a2𝜕y𝜃1

2𝜃3 = 𝜃1 + 𝜆

𝜆 + 2𝜇
(𝜕x𝜙0 + 𝜕y𝜓0)

(2)

• for anti-symmetric (bending) behaviour:

2𝜙3 = 𝜙1 + 𝜕x𝜃0

2𝜓3 = 𝜓1 + 𝜕y𝜃0

2𝜃2 = a2 𝜆

𝜆 + 2𝜇
(𝜕x𝜙1 + 𝜕y𝜓1)

(3)

where 𝜆 and 𝜇 are the Lamé constants.
Taking into account the relations given by Eqs. (2) and (3) the strain

field associated with the current definition of the displacement field
can be easily defined. Based on that definition the characteristic ele-
mental inertia [M] and stiffness [K] matrices can be evaluated after
assuming a certain polynomial order m as well as an approximation
method (Lobatto of Chebyshev) for the unknown functions 𝜙i(i = 0,1),
𝜓i(i = 0, 1) and 𝜃i(i = 0,1). This common and standard procedure for
the classical FEM approach as well as TD-SFEM is well described and
presented in Refs. [21–23].

However, due to the fact that the higher order terms, given by
Eqs. (2) and (3), involve local derivatives of the unknown func-
tions 𝜙i(i = 0, 1), 𝜓i(i = 0,1) and 𝜃i(i = 0, 1), the evaluation process
of the characteristic elemental inertia [M] and stiffness [K] matrices
is presented with more details in the following Section 2.4 of this
paper.

2.2. Dispersion curves

Dispersion relations or dispersion curves provide very important
information about the dependence of the phase and group velocities cp
and cg on the frequency f , or the wave number k, for elastic waves prop-
agating within structures of interest. They also help to estimate signal
propagation times or distances, which on the other hand is very impor-
tant in all damage detection strategies that are based on the propagation
of guided elastic waves [24–27]. Dispersion relations for thin isotropic
plates were extensively studied in the past by many researchers, with
the results of the fundamental analytical research on that subject pre-
sented in Refs. [28,29]. Against these analytical relations all new theo-
ries developed should be assessed and verified in order to define their
applicability range. This procedure was also used by the authors of this
work.

Following the methodology described in Ref. [11] the dispersion
curves for the phase cp and group velocities cg , related with the dis-
placement field given by Eq. (1), can be obtained in a relatively straight-
forward manner by the use of Hamilton’s principle [14]. Under assump-
tion of small strains and displacements, the virtual work 𝕎 associated
with the deformation and motion of the shell element under investiga-
tion, may be expressed in terms of its strain energy 𝕌, kinetic energy
𝕋 , as well as the work of external forces 𝔽 . Bearing in mind the rela-
tions given by Eqs. (2) and (3) a set of coupled equations of motion
can be obtained for the unknown functions 𝜙i(i = 0,1), 𝜓i(i = 0, 1) and
𝜃i(i = 0, 1) that can be presented in the following form:
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