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A B S T R A C T

This paper presents a numerical strategy for the modeling of elasto-plastic materials under impact loadings. The
bi-potential method is efficient in dealing with implicit standard materials constitutive laws, such as frictional
contact. The Uzawa algorithm, based on the bi-potential method is applied to deal with the non-linearity of
boundary conditions. For the non-linearity associated with materials, a Return Mapping Algorithm is applied to
deal with the elasto-plastic constitutive laws. On the basis of the Updated Lagrangian formulation, we adopt a
Rotationally Neutralized Objective hypothesis to describe the geometrically non-linear behavior. Equations of
motion are integrated with a first order scheme. Three numerical examples are performed to verify the accuracy
and to show the applicability of the proposed approach.

1. Introduction

Accurate modeling and simulation of elasto-plastic materials under
impact loadings is always considered to be a complex problem in solid
mechanics. In this paper, we propose a strategy to tackle this issue. From
the mechanical point of view, this strategy can be separated into three
main parts: frictional contact, material's non-linearity of finite strain and
equations of motion [14].

Handling the non-linearity of boundary condition, which is the fric-
tional contact problem, is of great importance in many engineering ap-
plications. It is certainly one of the top non-linear mechanics topics [17].
Literature shows that the finite element procedures are widely used to
deal with such problems [12]. To establish the constitutive laws of fric-
tional contact, many attempts have been made in the past. The penalty
approximation, for example, is suitable for many applications [4].
However, in some cases, inappropriate penalty factor leads to inaccurate
contact boundary conditions and friction laws [11]. Investigators pro-
moted some strategies to improve the accuracy of the penalty method [2,
19]. It is proved that the extended formulation of the augmented
Lagrangian method has excellent performances in dealing with frictional
contact issues [1,15]. On the basis of the augmented Lagrangian, a
bi-potential method was promoted by de Saxc�e and Feng, where dual
variables satisfy the Fenchel's transform [3]. The bi-potential method not
only combines Signorini conditions and Coulomb's friction laws, but is

also more efficient to approach the constitutive laws of frictional contact.
To solve the general frictional contact equations, the Uzawa algorithm
targets only the global governing equation of contact, making it faster
and more suitable than the Newton Algorithm, as verified by Joli and
Feng [10]. Therefore, combining the bi-potential method with the Uzawa
algorithm to solve frictional contact governing laws is a highly feasible
strategy.

Regarding constitutive relationships, the material non-linearity is
considered through a mixed J2 model. The finite and permanent de-
formations always occur during the impact process. The Return Mapping
Algorithm (RMA) is a classic implicit algorithm put forward by Simo and
Taylor, and is widely used in elasto-plasticity [16]. The RMA satisfies
both the global equilibrium equations and the local material constitutive
laws in every incremental step. It leads to a better stability during the
solving process [14]. Under impact loadings, the constitutive relation-
ships are always influenced by the geometrical non-linearity, plenty of
hypothesis about the configurations have been promoted. The Total
Lagrangian (TL) frame is usually used in hyper-elastic models. For
elasto-plastic materials, many of them are described in an Updated
Lagrangian (UL) frame. What is more, the Rotationally Neutralized Ob-
jectivity (RNO) is one hypothesis that proves to be stable and efficient for
simulating large deformations of elasto-plastic materials [14].

Upon combining frictional contact, material non-linearity and large
deformation, the governing equations of the elasto-plastic impact will be
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time-integrated. To avoid discontinuities in velocity and acceleration, a
first order algorithm, proposed by Jean [8], is chosen. The method has
successfully been verified on hyper-elastic materials by Feng et al. [6].

This work focuses on the application of an accurate modeling strategy
in dealing with frictional contact laws of general elasto-plastic materials
under impact loadings. As in Ref. [10], the Uzawa algorithm is imple-
mented within the bi-potential framework to solve frictional contact
equations. Meanwhile, on the foundation of the rotationally neutralized
objective algorithm, the RMA is chosen to handle the material constitu-
tive laws. Then, a first order algorithm is chosen to handle the time
integration of motion equations. Our strategy combines these three as-
pects and is implemented into the in-house finite element software
FEM/Form.

This paper is structured as follows. First, a brief presentation of the bi-
potential method and the Uzawa algorithm in dealing with frictional
contact will be given in Section 2. Then, Section 3 focuses on the
implementation of elasto-plastic materials constitutive laws by applying
the RMA on an classic mixed J2 model under the rotationally neutralized
objective framework. To solve the highly non-linear governing equation,
a first order algorithm is applied to integrate the equation of motion
presented in Section 4. In addition, Section 5 gives three numerical ex-
amples to verify the accuracy and the application of FEM/Form. Finally,
Section 6 draws some conclusions on our work.

2. Frictional contact

Assume that M1 and M2 are the points on contact body Ω1 and Ω2

respectively. The velocity vectors of the said points are _u1 and _u2. In the
local frame, the relative velocity vector is expressed as _u ¼ _u1 � _u2. The
relative velocity vector _u and the contact reaction vector r can be
uniquely decomposed into a normal part _unn, rnn, where n is the normal
direction, and a tangential part _ut , rt . The contact kinematic is shown in
Fig. 1. The vectors in the local contact system are:

�
_u ¼ _ut þ _unn ¼ _ut1t1 þ _ut2t2 þ _unn;
r ¼ rt þ rnn ¼ rt1t1 þ rt2t2 þ rnn:

(1)

with

t1 ¼ f 1 0 0 gT ; t2 ¼ f 0 1 0 gT ; n ¼ f 0 0 1 gT : (2)

Therefore, under the local contact kinematic frame, a complete
constitutive law of frictional contact, which combines the Signorini
condition and Coulombs law, can be expressed in a compact form as:

Separation : rn ¼ 0; _un � 0;

Sticking : r 2 Int
�
Kμ

�
; _u ¼ 0;

Sliding : rn > 0 ; r 2 Bou
�
Kμ

�
; _un ¼ 0; _ut ¼ �λ

rt
krtk:

(3)

where, Int
�
Kμ

�
and Bou

�
Kμ

�
denote the interior and the boundary of the

Coulomb cone set Kμ respectively, Kμ is defined as

Kμ ¼
�
r 2 R3∣krtk � μrn � 0

�
(4)

The constitutive law of frictional contact is typical of implicit materials

models [3]. Therefore, it is possible to apply the bi-potential theory to
solve contact laws equations [5]. On the basis of de Saxc�e and Feng's
work, the bi-potential function of frictional contact is stated as follows:

bð � _u; rÞ ¼ ΨKμ ðrÞ þΨR� ð � _unÞ þ μrnk � _utk; (5)

where ΨKμ ðrÞ represents the so-called indicator function of the closed
convex set Kμ. if r 2 Kμ, ΨKμ ðrÞ ¼ 0; otherwise ΨKμ ðrÞ ¼ þ∞. Consider
that

ΨKμ ðrÞ þΨR� ð � _unÞ þ μrnk � _utk � �ð _ut ⋅rt þ _unrnÞ (6)

On the basis of the bi-potential theory, we know that

8r; r0 2 Kμ; bð � _u; r0Þ � bð � _u; rÞ � � _u⋅ðr0 � r
�

(7)

Then, by applying the augmented Lagrangian method to the bi-potential
function, we obtain

8r; r0 2 Kμ; ρbð � _u; r0Þ � ρbð � _u; rÞ þ fr� ½rþ ρð � _uÞ � g⋅ðr0 � r
� � 0:

(8)

In the above equation, ρ is chosen to strictly positive to ensure numerical
convergence [3]. In Eq. (8), r is the proximal point of the augmented

force r_ ¼ rþ ρð � _uÞ with respect to ρbð � _u; rÞ:

r ¼ prox½rþ ρð � _uÞ; ρbð � _u; rÞ � (9)

The inequality above can be arranged as

8r0 2 Kμ;
�
r� r_

�
⋅ðr0 � r

� � 0; (10)

where the augmented reaction force r_ is defined by

r_ ¼ r� ρð _ut þ ð _un þ μk _utk Þn Þ (11)

Eq. (10) implies that r is the projection of r_ onto the closed convex
Coulomb's cone.

r ¼ proj
�
r_ ;Kμ

�
(12)

The Uzawa Algorithm appears suitable to calculate the coupling variables
ð � _u; rÞ in a frictional contact situation. It consists in the association of a
predictor and a corrector:

Predictor: r_
ðiþ1Þ ¼ rðiÞ � ρ

	
_uðiÞ
t þ �

_uðiÞn þ μ


 _uðiÞ

t



 �n �
;

Corrector: rðiþ1Þ ¼ proj
�
r_

ðiþ1Þ
;Kμ

� (13)

The corrector integrates three conditions: separating ( r_ 2 K*
μ), contact

with sticking ( r_ 2 Kμ) and contact with sliding ( r_ 2 R3 � ðKμ [ K*
μÞ). The

corrector can be explicitly defined as follows:

Separation: if μ



r_ ðiþ1Þ

t




<� r_
ðiþ1Þ
n then rðiþ1Þ ¼ 0;

Sticking: else if



r_ ðiþ1Þ

t




 � μτðiþ1Þ
n then rðiþ1Þ ¼ r_

ðiþ1Þ
;

Sliding: else rðiþ1Þ ¼ r_
ðiþ1Þ �

�


r_ ðiþ1Þ
t




� μr_
ðiþ1Þ
n

�
1þ μ2

0
B@ r_

ðiþ1Þ
t


r_ ðiþ1Þ
t




þ μn

1
CA

(14)

3. Elasto-plasticity under large deformation

The FEM remains widely used to simulate the behavior of elasto-
plastic materials, and the RMA is widely used when it comes to dealing

Fig. 1. The kinematics in the local contact system.

Y.-J. Zhou et al. Finite Elements in Analysis and Design 142 (2018) 42–50

43



Download English Version:

https://daneshyari.com/en/article/6925404

Download Persian Version:

https://daneshyari.com/article/6925404

Daneshyari.com

https://daneshyari.com/en/article/6925404
https://daneshyari.com/article/6925404
https://daneshyari.com

