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A B S T R A C T

We present a new approach for adding Bernoulli beam reinforcements to Kirchhoff plates. The plate is discretised
using a continuous/discontinuous finite element method based on standard continuous piecewise polynomial
finite element spaces. The beams are discretised by the CutFEM technique of letting the basis functions of the
plate represent also the beams which are allowed to pass through the plate elements. This allows for a fast and
easy way of assessing where the plate should be supported, for instance, in an optimization loop.

1. Introduction

Reinforcements of plates using lower–dimensional structures such
as beams are often employed for the purpose of increasing buckling
loads and avoiding eigenfrequencies in vibration problems. The effect
of stiffeners can be simulated in a finite element context in a variety of
ways. The important issue is how to couple the variables of the beam
to the variables of the plate. Different approaches have been suggested:

• Point (nodal) constraints matching beam and plate displacements
[20].

• Lagrange multipliers to tie the beam and plate [17].
• Using the plate basis functions also for the beam, along edges or

aligned with the elements [5], or obliquely [13,16,19].

The last approach has only been used in the context of Timoshenko
beams coupled to Mindlin–Reissner plates, where simple C0 approx-
imations can be used; a similar approach was recently suggested for
modeling embedded trusses by Lé, Legrain, and Moës [15]. In this
paper we present a method for the coupling of Kirchhoff plates and
Euler–Bernoulli beams based on this concept, together with a tangential
differential approach which simplifies the implementation for arbitrar-
ily oriented beams. This is possible thanks to the development of contin-
uous/discontinuous Galerkin (c/dG) methods for higher order problems
[6,7,9,10], avoiding the use of C1–continuity.

The fact that we do not have to employ higher continuity allows for
coupling in other contexts as well. In Ref. [12] we proposed to use the
same finite element space for the beam as for the higher dimensional

* Corresponding author.
E-mail address: peter.hansbo@ju.se (P. Hansbo).

structure modeled by linear elasticity, using second order polynomials
for elasticity and taking the restriction, or trace, of these polynomials
to model the beam using c/dG.

2. Modeling of reinforced plates

2.1. The basic approach

In this Section we develop a simple model of a set of beam elements
in a plate. The main approach is as follows:

• Given a continuous finite element space, based on at least second
order polynomials for the plate, we define the finite element space
for the one–dimensional structure as the restriction of the plate finite
element space to the structure which is geometrically modeled by an
embedded curve or line.

• To formulate a finite element method on the restricted or trace
finite element space we employ continuous/discontinuous Galerkin
approximations of the Euler–Bernoulli beam model. The beams are
then modeled using the CutFEM paradigm and the stiffness of the
embedded beams is in the most basic version, which we consider
here, simply added to the plate stiffness.

To ensure coercivity of the cut beam model we in general need to
add a certain stabilization term which provides control of the discrete
functions variation in the vicinity of the beam. However, for beams
embedded in a plate, the plate stabilizes the beam discretizations, and
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we shall show that if the plate is stiff enough compared to the beam
the usual additional stabilization [1] is superfluous. The plate problem
may also be viewed as an interface problem in order to more accu-
rately approximate the plate in the vicinity of the beam structure; this
approach is however significantly more demanding from an implemen-
tation point of view and we leave it for future work.

The work presented here is an extension of earlier work [4] where
membrane structures were considered, in which case a linear approxi-
mation in the bulk suffices.

2.2. The Kirchhoff–Love plate model

In the Kirchhoff–Love plate model, posed on a polygonal domain
Ω ⊂ ℝ2 with boundary 𝜕Ω and exterior unit normal n𝜕𝛺, we seek an
out–of–plane (scalar) displacement u to which we associate the strain
(curvature) tensor

𝜺(∇u) ≔ 1
2
(∇⊗ (∇u) + (∇u)⊗∇) = ∇⊗∇u = ∇2u (1)

and the plate stress (moment) tensor

𝝈P(∇u) ≔ P
(
𝜺(∇u) + 𝜈𝛺(1 − 𝜈𝛺)−1div ∇u I

)
(2)

= P
(
∇2u + 𝜈𝛺(1 − 𝜈𝛺)−1ΔuI

)
(3)

where

P =
E𝛺t3

𝛺

12(1 + 𝜈𝛺)
(4)

with E𝛺 the Young’s modulus, 𝜈𝛺 the Poisson’s ratio, and t𝛺 denotes
the plate thickness. Since 0 ≤ 𝜈𝛺 ≤ 0.5 the constants are uniformly
bounded.

The Kirchhoff–Love problem then takes the form: given the
out–of–plane load (per unit area) f , find the displacement u such that

div 𝐝𝐢𝐯𝝈P(∇u) = f in Ω (5)

u = 0 on 𝜕Ω (6)

n𝜕𝛺 · ∇u = 0 on 𝜕Ω (7)

where 𝐝𝐢𝐯 and div denote the divergence of a tensor and a vector field,
respectively.

Weak Form. The variational problem takes the form: Find the dis-
placement u ∈ VΩ = H2

0 (Ω) such that

aΩ(u, v) = lΩ(v) ∀v ∈ VΩ (8)

where the forms are defined by

aΩ(v,w) = (𝝈P(∇v), 𝜺(∇w))Ω (9)

lΩ(v) = (f , v)Ω (10)

We employ the following notation: L2(𝜔) is the Lebesgue space
of square integrable functions on 𝜔 with scalar product (·, ·)L2(𝜔) =
(·, ·)𝜔 and (·, ·)L2(Ω) = (·, ·), and norm ‖·‖L2(𝜔) = ‖·‖𝜔 and ‖·‖L2(Ω) = ‖·‖,
Hs(𝜔) is the Sobolev space of order s on 𝜔 with norm ‖·‖Hs(𝜔),
and H1

0 (Ω) = {v ∈ H1(Ω) ∶ v = 0 on 𝜕Ω}, and H2
0 (Ω) = {v ∈ H2(Ω) ∶

v = n𝜕𝛺 · ∇v = 0 on 𝜕Ω}.

2.3. The Euler–Bernoulli beam model

Consider a straight thin beam with centerline Σ ⊂ Ω and a rectangu-
lar cross-section with width bΣ and thickness tΣ, see Fig. 2. The mod-
eling of the beam is performed using tangential differential calculus
and we follow the exposition in Refs. [11,12], which also covers curved
beams. Using this approach the beam equation is expressed in the same
coordinate system as the plate, which is convenient in the construction
of the cut finite element method for reinforced plates, see Fig. 1 for
examples.

Let t be the tangent vector to the line Σ and PΣ = t ⊗ t the projection
onto the one dimensional tangent space of Σ and define the tangential
derivatives

∇Σv = PΣ∇v, 𝜕tv = t · ∇v (11)

Then we have the identity

∇Σv = (𝜕tv)t (12)

Based on the assumption that planar cross sections orthogonal to
the midline remain plane after deformation we assume that the dis-
placement takes the form

u = un + 𝜃𝜁 t (13)

where 𝜁 is the signed orthogonal distance to Ω, positive on one side of Ω
and negative on the other side, and 𝜃 ∶ Σ → ℝ is an angle representing
an infinitesimal rotation, assumed constant in the normal plane.

In Euler–Bernoulli beam theory the beam cross-section is assumed
plane and orthogonal to the beam midline after deformation and no
shear deformations occur, which means that we have

𝜃 = t · ∇u ≔ 𝜕tu (14)

Fig. 1. Examples of plates reinforced by beams.

Fig. 2. Left: The reinforced plate geometry parameters, tΩ, tΣ, and bΣ.
Right: Alternative design of reinforcement with two separate beams
of thickness sΣ = (tΣ − tΩ)∕2 above and below the plate.
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