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A B S T R A C T

This study deals with the development of a new solid-shell element using the Cosserat point theory for the linear
and nonlinear analysis of laminated elastic structures. Generally speaking, the Cosserat point approach considers
the element as a structure with a strain energy function that characterizes its response. This strain energy function
is additively decomposed into two parts, where the first part depends on an average measure of the deformation
and the second part, which is referred to as the inhomogeneous strain energy, controls the element’s response
to any inhomogeneous deformation. Due to the coupling nature between homogeneous and inhomogeneous
deformation in laminated structures, the inhomogeneous strain energy is further additively decomposed into
two parts. The first part quadratically depends on the inhomogeneous strain measures, while the second part
accounts for the coupling between the homogeneous and inhomogeneous deformations. In the present study,
a methodology for the determination of the constitutive coefficients for the two parts of the inhomogeneous
strain energy function is presented. The resulting constitutive coefficients ensure an accurate modeling of the
inhomogeneous deformations and also ensure that the element has a control on all the inhomogeneous modes
of the deformation. Both linear and nonlinear example problems are considered, which demonstrate that the
developed laminated Cosserat point element (LSSCPE) is accurate, efficient, robust, and applicable in modeling
laminated structures with one element through the structure’s thickness.

1. Introduction

Laminated composite materials have been increasingly applied in
various engineering sectors (e.g. aerospace, auto-mobile, submarine,
and biomedical engineering) for constructing lightweight structures
[1,2]. Thus, various plate and shell theories have been formulated to
predict the response of laminated composite plates and shells [3–8]
among other, and numerical tools have been developed to analyse the
response of laminated structures with complex geometry. The most
common numerical tool for this purpose is the finite element method.
In particular, finite elements that are designed to model thin structures
via one element through the structure’s thickness can be broadly clas-
sified into the following three categories: (i) shell elements based on
various laminated plate/shell theories; (ii) degenerated shell elements
directly obtained from a fully three-dimensional continuum theory; and
(iii) solid-shell elements derived from three-dimensional solid elements.

Elements based on laminated plate/shell theories can be subdivided
into three groups, namely, elements based on the equivalent single
layer (ESL) theories, elements based on layerwise models, and elements
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based on Zig-Zag theory [9–12]. Elements based on single layer theories
are suitable for modeling the global response of laminated structures
and they are computationally efficient as the number of unknowns is
independent of the number of layers constituting the laminate [13–22].
In contrast, element formulations based on layerwise theories [23–28]
are designed to predict the local response of the laminate by assuming
independent displacement fields for each layer, and can be applied for
regions where the stress distribution is of primary interest. However,
this comes at the expense of a higher computational cost as the num-
ber of unknown parameters depends on the number of layers. Attempts
to combine the advantages of ESL and layerwise theories have led to
the development of the Zig-Zag models [29–35]. Furthermore, these
attempts have led to the development of the multiscale laminated plate
theory [36] and the global-local plate and shell elements [37–39].

As in shell elements, the degenerated shell elements [40] model a
shell in terms of mid-surface nodal variable consisting of both trans-
lation and rotational variables. Numerous successful degenerated shell
elements were developed for the analysis of laminated composite struc-
tures [41–47] among others. As a result of the involvement of rota-

https://doi.org/10.1016/j.finel.2017.12.006
Received 3 August 2017; Received in revised form 14 December 2017; Accepted 20 December 2017
Available online XXX
0168-874X/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.finel.2017.12.006
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/finel
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2017.12.006&domain=pdf
https://doi.org/10.1016/j.finel.2017.12.006
mailto:cvjmah@technion.ac.il


M. Jabareen and E. Mtanes Finite Elements in Analysis and Design 142 (2018) 61–80

tional degrees-of-freedom, both shell and degenerated shell elements
suffer from several disadvantages, such as: the required special transi-
tion elements when solid elements are combined with such elements,
and the required special rotation interpolation strategies for preserving
the objectivity of strain measures with respect to a rigid motion [48,49].

On the other hand, solid-shell elements possess only displacement
degrees of freedom that are located at the bottom and top surfaces.
Therefore, the aforementioned drawbacks, which are associated with
both shell and degenerated shell elements, are naturally avoided when
using solid-shell elements. In addition, the implementation of gen-
eral three-dimensional constitutive equations into solid-shell elements
and the exact evaluation of stress distribution along the thickness are
straightforward. As a result, the development and improvement of solid-
shell elements have recently gained considerable interest and differ-
ent well-established techniques, such as: assumed natural strain (ANS),
enhanced assumed strain (EAS), and hybrid stress methods that must be
applied for treating different locking phenomena including volumetric
locking, membrane locking, Poisson-thickness locking, transverse shear
locking, and curvature-thickness (trapezoidal) locking [50–64]. How-
ever, the first contribution with regard to the analysis of laminated
structures via one solid-shell element through the laminate thickness
is the work of [65]. Specifically [65], have used the ANS and EAS
methods to construct their element formulation. Using only one element
through the laminate thickness, the number of degrees of freedom was
independent of the layer number. Since then, several advanced solid-
shell elements for modeling laminated structures have been developed
[66–77].

Recently, a novel finite element technology based on the Cosserat
point theory [78–82] was developed and applied in the formulation of
a 3D brick element for the numerical solution of problems for non-
linear hyperelastic materials. Generally speaking, the Cosserat point
element considers an element as a structure and introduces a strain
energy function that characterizes its response to homogeneous and
inhomogeneous deformations. Once the strain energy of the Cosserat
point element has been specified, integration over the element region
is not required and the response of the element is hyperelastic. From
the numerical point of view, it was observed that the 3-D brick Cosserat
point element is a robust and accurate element that can be used to
characterize the response of thin plates and shells with only one ele-
ment through the thickness, as well as, complicated three-dimensional
structures [79–82]. With regards to solid-shell developments, [64] have
developed a solid-shell element using the Cosserat point theory and
showed the applicability of the developed element in modeling thin
structures. Specifically, [64] modified the volume average of the Green-
Lagrange strain tensor and introduced the assumed natural inhomoge-
neous strain concept in order to eliminate the well-known transverse
shear locking and curvature-thickness locking in solid-shell elements.

In the present study, a solid-shell finite element formulation, which
is based on the Cosserat point theory, is developed for the linear and
nonlinear analysis of laminated structures. This element will be referred
to as a laminated solid-shell Cosserat point element (LSSCPE). As it is
mentioned before, the response of the Cosserat point element is deter-
mined by proposing a strain energy function. Generally speaking, this
strain energy function is additively decomposed into a homogeneous
part and an inhomogeneous part, where the latter part is assumed to
quadratically depend on the inhomogeneous strain measures. For lam-
inated composite structures, the quadratic form of the inhomogenous
strain energy function is insufficient due to the coupling between homo-
geneous strains and inhomogeneous strain measures. Therefore, in the
present study, the inhomogeneous strain energy function is enriched by
adding additional term that controls the coupling between the homo-
geneous deformations and inhomogeneous ones. The two terms con-
stituting the inhomogeneous strain energy function depend on sets of
constitutive coefficients, which control the accuracy and the stability
of the element. In the present study, a methodology for the determi-
nation of the constitutive coefficients is introduced. These constitutive

coefficients are determined by integrating a three-dimensional strain
energy function that quadratically depends on a strain field, where the
latter is additively decomposed into a modified compatible part and
an enhanced part. The compatible strain field is modified based on
the assumed natural inhomogeneous strain concept proposed in Ref.
[64] to avoid both transverse shear locking and curvature-thickness
locking. The enhanced part of the strain field is designed to avoid
Poisson-thickness locking, volumetric-locking, as well as, to improve
the accuracy for bending. The resulting constitutive coefficients lead to
a solid-shell element, which is accurate, robust, totally free of locking
and insensitive (as much as possible) to mesh distortion. From the com-
putational point of view, the developed laminated solid-shell Cosserat
point element is efficient, since no integration is required to calculate
both the internal nodal forces vector and the tangent stiffness matrix.

The paper is outlined as follows: Section 2 presents the basic kine-
matic quantities of the laminated solid-shell Cosserat point element
(LSSCPE), the assumed natural inhomogeneous strains (ANIS) con-
cept, and the strain energy function of the LSSCPE. Section 3 describes
the procedure for determining the constitutive coefficients of the inho-
mogeneous strain energy function. In Section 4, the nodal internal
forces and the tangent stiffness matrix for the finite element formu-
lation are developed. Section 5 presents a pseudo code for the imple-
mentation of the LSSCPE and Section 6 presents a numerical study of
the performance of the developed LSSCPE. Finally, Section 7 presents
the conclusions.

2. Theoretical background

In this section, the basic kinematic quantities of the laminated solid-
shell Cosserat point element (LSSCPE), the assumed natural inhomo-
geneous strain (ANIS) concept, and the strain energy function of the
LSSCPE will be presented.

2.1. Kinematics

Let
{
𝐃i, 𝐝i

}
be the location of the eight nodes of the finite element

in the reference and deformed configurations, respectively (see Fig. 1).
Using the Bubnov-Galerkin approach the location of a material point in
the reference configuration, 𝐗∗, and the location of the same material
point in the deformed configuration, 𝐱∗, are given by

.

𝐗∗ =
7∑

i=0
N

i (
𝜃1, 𝜃2, 𝜃3)

𝐃i, 𝐱∗ =
7∑

i=0
N

i (
𝜃1, 𝜃2, 𝜃3)

𝐝i, (1)

where, N
i
, are the standard tri-linear shape functions, which satisfy

the Kronecker property, and −1∕2 ⩽ 𝜃i ⩽ 1∕2, (i = 1, 2,3) are the con-
vected coordinates. For the kinematic description, it is convenient to
express the position vectors {𝐗∗, 𝐱∗} in terms of generalized variables,
which will be referred to as element directors of both reference and
deformed configurations, as follows

𝐗∗ =
7∑

i=0
Ni (𝜃1, 𝜃2, 𝜃3)

𝐃i, 𝐱∗ =
7∑

i=0
Ni (𝜃1, 𝜃2, 𝜃3)

𝐝i, (2)

where Ni are the tri-linear shape functions defined by

N0 = 1, N1 = 𝜃1, N2 = 𝜃2, N3 = 𝜃3,

N4 = 𝜃1𝜃2, N5 = 𝜃1𝜃3, N6 = 𝜃2𝜃3, N7 = 𝜃1𝜃2𝜃3.
(3)
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