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A B S T R A C T

Pyramid finite elements have become increasingly popular to facilitate meshing due to their distinctive shape and
innate ability to transition naturally between elements with quadrilateral and triangular faces. This is especially
important for explicit time integration, as the alternative of constraints can be problematic for wave propagation
applications frequently modeled by such methods. Although formulations to alleviate singularity problems near
the apex node have existed for decades, pyramid elements are not available in typical explicit solid dynamics
software. Several 5-node pyramid approaches are evaluated herein for suitability as transition elements in lumped
mass explicit methods for nonlinear solid dynamics. Several typical pyramid elements generated from both
hexahedral shape functions and with Bedrosian rabbit functions are extended to explicit temporal methods by the
development of mass lumping and critical time increment estimation schemes. Standard and uniform strain
hexahedrons are also degenerated into a pyramid by simple nodal duplication in the connectivity. A focus of the
study is on the viability of using only existing hexahedron capabilities typically available in many explicit codes.
Performance is assessed in standard benchmark problems and practical applications using various elastic and
elastic-plastic material models and involving large strains/deformations, severe distortion, and contact-impact.
Examples first evaluate the elements on their own and then for the principal case as transitions within a
hexahedral-dominant model. Row-summation mass lumping is shown to be the best method for any pyramid
element approach, which may require slight coding changes for degenerated hexahedrons. The results indicate
that it may also be a good systematic method for mass lumping of general degenerate hexahedral types. The single
quadrature point standard and Bedrosian pyramid elements are also found to be robust and the best performers,
particularly requiring significantly fewer computations than the degenerated uniform strain hexahedron. If used
properly, however, all element types are demonstrated to perform satisfactorily (and identically) and thus
demonstrate their viability and benefits for practical applications using hexahedral-dominant meshing.

1. Introduction and background

Pyramid finite elements are not typically used alone in models, but
are useful for modeling transition regions in hexahedral-dominant
meshes. The first-order 5-node pyramid elements, considered herein,
have a quadrilateral base face and four triangular faces (see Fig. 1). Their
mixture of both quadrilateral and triangular faces naturally facilitates
systematic transition between hexahedral and tetrahedral regions
without the use of multipoint constraints. Wave propagation is frequently
an important component of explicit analyses and constraints, such as
used for mesh tying of multiple regions, can introduce significant wave
dispersion errors at tied interfaces. This is an important contrast to static
or slower implicit analyses where mesh tying can be quite effective.

Analysts historically have created such “Hex-Dominant” models directly
or may use more recent automatic meshing approaches, e.g., [1–3], that
generate only brick elements until they encounter difficult regions that
they then fill with combinations of wedge, tetrahedral, and pyramid
elements.

Although wedge elements are also suitable for such transitions, the
geometries of pyramid and wedge elements provide their own distinct
meshing advantages and limitations. Wedge-hexahedral meshes are
naturally created by extruding/sweeping two-dimensional triangle-
quadrilateral meshes. Pyramids can facilitate more complex three-
dimensional connections between hexahedrons and tetrahedrons and/
or wedges. Unstructured tetrahedral meshing approaches can also easily
grid complicated geometries, but they typically are considerably more
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computationally expensive, since they generally consist of many more
elements (usually by one or more orders of magnitude). Automated
all-Hex meshing also continues to improve in quality and model size, but
each of these approaches still have their own pros and cons.
Hex-Dominant approaches are available in various popular meshing
software, e.g., ABAQUS CAE [3], and offer a compromise by producing
models that predominately consist of the preferred hex elements while
providing the desirable more automatic characteristic of a “tet” mesher.
Instead of automatically meshing with tests for the entire mesh, the
automation is applied only to regions where the “hex” mesher has
trouble. Despite the accuracy sacrificed in certain regions (transition and
non-hexahedron), the reduced meshing time for the analyst may be well
worthwhile and the solution time typically is significantly less than with
an all tetrahedral mesh.

Unfortunately, pyramids generally do not perform as well as brick
elements, especially first-order ones that typically can be overly stiff in
flexure or in nearly incompressible material applications. They prefer-
ably should be well-shaped and used for noncritical regions of low stress/
strain gradients. Pyramid elements are also prone to singularity issues
near the apex node, but Bedrosian [4] demonstrated the significant
benefits of using “rabbit” functions over traditional finite element
functions, e.g., a degenerated hexahedron, to overcome these difficulties
in displacement-based formulations. The standard pyramid exhibits these
singularities at the apex [4], since it is developed by collapsing a face of a
hexahedron into a single node and maps the pyramid into the parent
isoparametric hexahedron, as shown Fig. 1(a). Standard Gauss-Legendre
quadrature for the hexahedron may thus be used for this element, but a
large number of quadrature points may be necessary and a strongly
skewed pyramid may still be problematic. The Bedrosian element [4]
maps into a parent pyramid element, as shown Fig. 1(b), and the rabbit
function pyramids also contain singularities near the apex, but much
weaker ones that provide accurate results in C0 continuity formulations
with low-order numerical quadrature. Felippa [5] later developed special
quadrature rules, which recognize that the mapping is from a pyramidal
shape, that are also accurate with low-order numerical quadrature.
Despite these findings, pyramid elements have not generally appeared in
popular nonlinear solid mechanics finite element codes, particularly not

in ones using explicit integration for high rate dynamics, which histori-
cally have contained mostly first-order C0 continuity elements. Classical
finite element analysis (FEA) continues to be a primary computational
method of choice for most solid mechanics applications and the explicit
method is significantly used by analysts in many industries such as
defense, crashworthiness, and metal forming. The explicit lumped mass
approach, without the use of a stiffness matrix, uses many small time
increments with a central difference scheme to march through time. It is
thus well suited for rapidly changing/high-rate short duration applica-
tions, but can produce distinct nuances and severely affect element
performances differently than in typical static/implicit methods [6].
Several additional features must also be developed for the lumped mass
explicit method that are not needed with static/implicit methods.

Although second-order elements have recently emerged in explicit
codes [6–9] and show benefits for Hex-Dominant modeling in many cases
[8], first-order elements have long dominated explicit analyses and may
still be the better choice for many modeling situations. In static/implicit
analyses where additional element costs may be small compared to the
equation solving, it may be desirable to avoid potential problems by
splitting pyramids into tetrahedra, but the cost of an explicit analysis is
directly proportional to the number of elements, and element splits can
drive down the critical time increment to increase CPU time. It thus
seems to be important to include first-order pyramid elements and/or
pyramid element capabilities, e.g., degenerate hexahedrons, as options in
explicit analysis codes to be able to better exploit hexahedral dominant
meshing for general modeling. In Ref. [10], the uniform strain
hexahedron of Flanagan-Belytschko [11] was degenerated into a variety
of transition elements for Hex-Dominant explicit analyses, including a
pyramid, by various simple duplications of nodal definitions in the
connectivity. Although the results of this initial cursory investigation are
promising, they did not rigorously look at mass lumping, hourglass
modes, locking, or degenerate surfaces. Since the Flanagan-Belytschko
formulation uses closed form expressions to compute the volume
and uniform gradients, it may naturally avoid the singularities with
the degenerated standard hexahedral functions near the pyramid
apex node that can be problematic with numerical integration.
The Flanagan-Belytschko hexahedron is commonly contained in many

Fig. 1. Five node type pyramid finite elements (PYR5) configuration (left) showing two mapping options into a parent element on the right (a) mapped into a hexahedron and (b) mapped
into a pyramid.
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