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A B S T R A C T

Three-dimensional (3D) vibration behavior of elastic parallelepipeds, including beams, plates, and solids, is
critical for a wide range of engineering applications. However, obtaining accurate 3D solutions of parallelepipeds
is a relatively challenging task. In this paper, a novel and general 3D weak form quadrature element method
(QEM) is presented for solutions of vibrations of parallelepipeds with different combinations of boundary con-
ditions. The element stiffness and mass matrices are explicitly derived via the numerical integration together with
the differential quadrature (DQ) law. A number of case studies on beams, thin and thick plates, and 3D solids with
different combinations of boundary conditions have been conducted. The natural frequencies and mode shapes
were in excellent agreement with existing results and data obtained by the finite element method with a very fine
mesh. It is seen that the proposed 3D quadrature element is simple in formulations, computationally efficient and
capable of capturing the 3D vibration behavior of parallelepipeds with high precision. In addition, some new
frequencies and mode shapes are provided to augment the archived reference frequencies and mode shapes.

1. Introduction

Beams, plates and shells are the basic structural elements in engi-
neering applications. Their vibration behavior is of important to the
designers and engineers and thus has been received great attentions.
With a choice of different parameters, parallelepipeds can represent a
number of structural elements, such as beams, thin and thick plates, and
solids. Therefore, three-dimensional (3D) vibration behavior of elastic
parallelepipeds with different combinations of boundary conditions is
important for a wide range of engineering applications [1]. Accurate 3D
vibration solutions of parallelepipeds can be used not only for practical
applications but also for evaluations of the precision of various
lower-order beam and plate theories [2–6]. However, obtaining accurate
3D vibration solutions of parallelepipeds is a relatively challenging task,
and thus much fewer works as compared to the ones of beams, plates [7]
and shells [8] have been reported thus far.

In the literature, several approaches have been used for solving the 3D
vibration problems of elastic structures with parallelepiped shape,
including the finite element method (FEM), the finite difference method
(FDM), various Ritz methods, and the spectral method (SM) [1–6]. The
methods of finite element and finite difference are versatile approaches,
but they are computationally inefficient. The 3D spectral method such as

the 3D spectral-Tchebychev method [1] is computationally more effi-
cient than the FDM and FEM, since the SM possesses exponential rate of
convergence. The rate of convergence of various Ritz methods depends
not only on the assumed displacement functions but also on the boundary
conditions [2–6].

It is seen that only frequencies and mode shapes of doubly symmetry
(SS), symmetry-antisymmetry (SA), antisymmetry-symmetry (AS), and
doubly antisymmetry (AA) about two orthogonal planes of parallelepi-
peds, i.e., about the x ¼ a/2 and y ¼ b/2 planes shown in Fig. 1, have
been reported in literature [1–6]. Since the parallelepiped possesses
three symmetric planes, i.e., the x ¼ a/2, y ¼ b/2 and z ¼ c/2 planes,
other coupled mode shapes also exist for the 3D vibrating parallelepipeds
with different combinations of boundary conditions and may be impor-
tant in practical applications.

Currently several other simple and efficient numerical methods are
available and may be employed for obtaining accurate 3D vibration so-
lutions of parallelepipeds, such as the differential quadrature method
(DQM) [9–13], the discrete singular convolution (DSC) algorithm
[14–23], and the weak form quadrature element method (WQEM or
simply QEM) [24–30].

Both DQM and DSC belong to the strong form methods. The DQM
[9–13] is simple and can obtain accurate solutions with minimum
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number of grid points. The DSC, proposed by Wei [14–17], possesses an
excellent feature of obtaining relatively accurate high mode frequencies
at the same time [18,19,22] besides obtaining accurate lower mode
frequencies. Being a high order finite element method, the QEM [24–30]
possesses advantages of the flexibility of the FEM and high accuracy of
the DQM.

From literature reviews, however, the DQM, the DSC, and the QEM
have been used only for one- or two-dimensional vibration analysis of
elastic beams, plates and shells. Perhaps one of the possible reasons is
that the programming for 3D analysis by using these methods poses some
challenges.

In this paper, the QEM is used for solving the problem of free vibra-
tions of 3D elastic solids with different boundary conditions. The reasons
to select the QEM are that the method possess exponential rate of
convergence, its formulation is simpler than the existing one of the 3D
spectral-Tchebychev method, the implementation of various boundary
condition is simple, and the programming effort is less than the DQM and
the DSC. For the strong form methods, such as the DQM and the DSC,
difficulties may arise in the implementation of the free boundary con-
ditions, especially at the free corner point. There are six zero stress
conditions, but only three of them can be applied by the strong form
methods, such as the DQM and the DSC. Although the iteratively
matched boundary method [20], matched interface and boundary
method [21], and Taylor series expansion method [22] can be used to
apply the free boundary conditions, but these methods are not as
convenient as the ones of the weak form methods, such as the QEM and
FEM. In the QEM and FEM, the zero stress conditions are natural
boundary conditions, and thus are satisfied automatically. In other
words, the C0 continuity is enforced. Moreover, it is also possible to
develop weak form quadrature element satisfying higher order continu-
ity requirements, i.e., the C1 continuity is enforced [8].

The weak form quadrature element method is originally proposed by
Striz et al. [24,25]. The QEM is different from the strong form differential
quadrature element method presented in Refs. [10,11], since its formu-
lations are based on theminimum potential energy. In principle, the QEM
can be regarded as a high order finite element method. The major dif-
ferences from the conventional high-order FEM are (a) Element nodes are
distributed non-uniformly; and (b) Explicit formulations of element

stiffness and mass matrices are obtained by numerical integration via the
help of the differential quadrature law. Therefore, the element can be
implemented adaptively, i.e., the number of element nodes can be
changed arbitrarily according to the requirement of the solution accu-
racy. It has been demonstrated in solving one-dimensional (1D) and two-
dimensional (2D) problems that the QEM is computationally efficient
[30] and also possess exponential rate of convergence [24,25].

It should be mentioned that the research groups of Zhong [26,27],
Xing [28] and Wang [29] have made important contributions to the
development of the QEM. Now any kind of points can be used as the
element nodes and both Gauss quadrature and Gauss–Lobatto–Legendre
(GLL) quadrature can be employed in the numerical integration.
Although the QEM is frequently regarded as the spectral element method
(SEM) [31,32], popular in the wave field due to its exponential rate of
convergence. However, differences between the QEM and the SEM
[33–38] do exist and are clearly given in Refs. [24,25,30].

The objective of present investigation is to present a new solution
technique, i.e., the QEM, for analyzing the 3D vibration behavior of
elastic parallelepipeds efficiently. A general 3D quadrature parallele-
piped element is proposed. The novelties of the proposed QEM are that
any types of points can be used as element nodes and that Gauss quad-
rature can be used in numerical integration. Therefore, the method is
more general than the existing QEM and the SEM.

Detailed formulations are given. A number of case studies on beams,
plates, and solid cubes with different combinations of boundary condi-
tions are conducted by using the proposed 3D quadrature parallelepiped
element. For verifications, numerical results are compared with existing
solutions and data obtained by the finite element method with a fine
mesh. In addition, some new frequencies and modes shapes are provided
to augment the archived reference frequencies and mode shapes. Finally,
conclusions are drawn based on the results reported in this paper.

2. Novel weak form 3D quadrature element formulations

2.1. Expressions of strain energy and kinetic energy

Let symbols V ;E;G; μ; ρ represent the volume of the elastic solid,
elasticity modulus, shear modulus, Poisson's ratio, and the mass density,
respectively. The strain energy of an isotropic homogenous elastic solid
can be symbolically written as

U ¼ 1
2
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and ½C� and ½G� are 3 � 3 stiffness matrices of the material defined by
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where u, v and w are displacement components in x, y and z directions,
and x-y-z is the Cartesian coordinate system shown in Fig. 1.

The kinetic energy of an isotropic homogenous elastic solid is
given by

T ¼ ρ
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where t is the time.

Fig. 1. Sketch of an elastic parallelepiped.
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