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A B S T R A C T

This paper concerns a two-field reduced basis algorithm for the metamodelling of parametrized one-way coupled
thermoelasticity problems based on the constitutive relation error (CRE) estimation. The coupled system consists
of parametrized thermal diffusion and elastostatic equations which are explicitly coupled in a one-way manner.
The former can be solved in advance independently and the latter can be solved afterwards using the solution of
the former. For the fast and accurate analysis of the coupled system, we developed an algorithm that can choose
adaptively the number of reduced basis functions of the temperature field to approximate the CRE equality of the
mechanical field. We compute approximately the upper bound for the true errors of displacement and stress fields
in energy norms. To enable this, a two-field greedy sampling strategy is adopted to construct the displacement
and stress fields in an efficient manner. The computational efficiency of the proposed approach is demonstrated
with computing the effective coefficient of thermal expansion of heterogeneous materials.

1. Introduction

Coupled systems exist in many engineering applications such
as fluid-structure interaction, thermo-mechanical, electro-mechanical,
electro-magnetic, and so on. The coupling is caused by the interaction
between different subsystems describing different physical quantities
such as temperature, displacement, velocity, pressure, etc. After dis-
cretizing coupled systems with certain traditional numerical methods
such as finite-element and finite-volume methods, their resulting alge-
braic systems are often complex and very large. Such a complex and
large algebraic system entails difficulties for the real-time computation
which is vital for tailoring responses of the complex system via com-
putational system design approach. To circumvent such difficulties, the
purpose of this work is to develop a two-field model order reduction
(MOR) technique that can enable metamodelling of the coupled system
for the fast and accurate computation.

In the following, we provide a brief literature review on the use of
MOR techniques for coupled problems, as a more exhaustive overview
on this topic can be found in Refs. [1,2]. The first MOR technique to
deal with coupled systems is the component mode synthesis method
proposed for structural dynamics problems [3–5]. After that, different
MOR techniques have been proposed and can be categorized into sev-
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eral types. For examples, MOR techniques based on systems and con-
trol theory such as balanced truncation [6,7], MOR techniques based on
approximation theory such as moment-matching [8,9], MOR techniques
such as the reduced basis (RB) method [10,11], proper orthogonal
decomposition (POD) method [12,13] and proper generalized decom-
position method [14] have been successfully applied to coupled sys-
tems, and have shown significant efficiency for various multi-physics
problems.

In this work, we focus on the application of a reduced order model
(ROM) for the class of one-way coupled thermoelasticity problems. In
particular, a one-way coupled thermoelasticity problem shall include
one thermal elliptic partial differential equation (PDE) and one elas-
tic elliptic PDE, where the former can be solved in advance indepen-
dently and the latter is solved afterwards using the solution of the
former [15,16]. Due to this special property, the application of the
ROM for the thermal PDE is straightforward and simple: any avail-
able ROM with associated error estimation technique (e.g., a snapshot-
proper orthogonal decomposition method [17–20], a hyper-reduction
technique [21,22], a proper generalized decomposition method [23],
reduced basis with a successive constraint method [24,25], or a recent
two-field reduced basis method (TF-RBM) [26]) will work well for
such thermal problem. However, a posteriori error estimation for the
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ROM of the elastic PDE is complicated because of the passing of the
approximated ROM temperature field from the thermal PDE to the elas-
tic one. To the best of our knowledge, there is no work in literature
to evaluate such an error of the elastic PDE in this context. As ref-
erences, the application of ROM techniques for the class of coupled
thermoelasticity problems can be found in, for example, [7,27]. These
works belong to the class of either balance truncation or moment-
matching methods which were described briefly in the previous para-
graph.

In this paper, we pursue the RB methodology with a CRE estimation
to handle such parametrized coupled thermoelasticity problems. In par-
ticular, we use the TF-RBM with the CRE estimation technique [26] to
approximate certifiably both thermal and elastic PDEs. As mentioned in
the previous paragraph, while such an approach to handle the thermal
PDE is straightforward, that to handle the elastic PDE is not trivial and
requires some special modifications. This is due to the appearance of
expansion terms which depend on the true error of the RB temperature
field, besides the usual true errors of the RB displacement and stress
fields in the CRE equality.

Therefore, the first purpose of this paper is to propose an algorithm
to choose adaptively the number of RB basis functions of the temper-
ature field in such a way that these expansion terms are eliminated
— thus recovers approximately the CRE equality. In other words, we
recover the upper boundedness of the CRE estimator for true errors
of RB displacement and stress fields [26]. In turn, this CRE estima-
tor is used in a two-field greedy sampling algorithm to build the
corresponding reduced spaces of these displacement and stress fields.
The second purpose of this paper is to extend the CRE upper error
bound to goal-oriented error bounds for several quantities of inter-
est (QoIs), where these QoIs are linear functionals of the displace-
ment field. (Note that the QoIs of the thermal PDE are addressed
in the RB approximation of the thermal PDE in advance.) Based on
these goal-oriented error bounds, the final objective is to compute
the certified ROM approximations of the effective coefficient of ther-
mal expansion (CTE) for parametrized coupled thermoelasticity prob-
lems.

The remainder of the paper is organized as follows. In section 2, we
state the exact parametrized coupled thermoelasticity problem and its
finite-element discretization. In section 3, we describe our ROM approx-
imations for the thermal equation in section 3.1 and the elastic equa-
tion in section 3.2. While section 3.1 repeats briefly the work in Ref.
[26], section 3.2 and section 4 present all the novel proposed theory of
this paper. In particular, section 3.2 is devoted to the CRE estimator,
the proposed algorithm to select appropriately the number of RB basis
vectors for the temperature field, and the two-field greedy sampling
algorithm. Goal-oriented error bounds and the extension to compute
the effective CTE are presented in section 4. In section 5, the perfor-
mance of all the proposed algorithms is investigated for a 2D material
homogenization problem. Finally, we provide some concluding remarks
in section 6.

2. Parametrized explicitly coupled thermoelasticity equations

2.1. Exact formulation

2.1.1. Strong form
We consider the problem of determining the displacement field u(x)

and the (excess) temperature field 𝜃(x)1 within a static thermoelas-
tic body occupying the physically spatial domain Ω ∈ ℝd (d = 2, 3).
The displacement field u ∈  (Ω) =

(
H1(Ω)

)d and the temperature field

1 𝜃tot(x) = 𝜃ref + 𝜃(x) where 𝜃tot(x) is the total (absolute) temperature and 𝜃ref is the
reference temperature corresponding to the zero thermal strains state, which motivates
the notion excess temperature for 𝜃.

𝜃 ∈ Θ(Ω) = H1(Ω) satisfy the nonhomogeneous Dirichlet boundary con-
ditions u = w and 𝜃 = 𝜗 on the parts Γu and Γ𝜃 of the boundary Γ, respec-
tively. Here, H1(Ω) =

{
v ∈ L2(Ω) |∇v ∈ (L2(Ω))d

}
is a Hilbert space and

L2(Ω) is the space of square integrable functions over Ω. The body may
also be subjected to prescribed tractions t, body forces b, prescribed
flux h and heat source f on the boundary parts Γt , Ω, Γh and Ω, respec-
tively.

We define a set of input parameters  ⊂ ℝP, a typical point of which
is denoted by 𝜇 ≡ (𝜇1,… , 𝜇P). In particular, the force densities b, t; the
heat densities h, f ; the Dirichlet boundary conditions w, 𝜗 and the mate-
rial properties of the structure may be functions of parameter 𝜇. We
assume that Ω, Γu and Γ𝜃 do not undergo any parametric changes.

For a given parameter 𝜇, the strong formulation is stated as: obtain
(𝜃(𝜇), u(𝜇)) by solving the following one-way coupled system

.

Heat equation
⎧⎪⎨⎪⎩
−k(𝜇)∇2𝜃(𝜇) = f (𝜇) on Ω,

𝜃 = 𝜗 on Γ𝜃,

q(𝜇) = k(𝜇) · ∇𝜃(𝜇) on Ω,

(1)

Elastic equation
⎧⎪⎨⎪⎩
−div (𝜎(u(𝜇))) = b(𝜇) on Ω,

u = w on Γu,

𝜎(u(𝜇)) = D(𝜇) ∶ 𝜖(u(𝜇)) − D(𝜇) ∶ 𝜖0(𝜃(𝜇)) on Ω.

(2)

Here, q(𝜇) is the flux field and k(𝜇) is the heat conductivity tensor
for the heat equation. For the elastic equation, 𝜖(v) = 1

2

(
∇v + ∇vT) is

the strain field, 𝜎(𝜇) is the Cauchy stress field, D(𝜇) is the fourth-order
Hooke’s elasticity tensor which depends on the two Lamé constants 𝜆(𝜇)
and G(𝜇), 𝜖0(𝜃(𝜇)) is the thermal strain which depends on the tempera-
ture field 𝜃(𝜇) that was solved from Eq. (1) (see for instance Eq. (1.9) in
Ref. [28] or Eq. (8.23) in Ref. [29]). System (1) and (2) is thus one-way
coupled in this sense. (Interested readers can refer to the full coupled
thermomechanical system, for instance, arising in shear band modelling
application [30,31].)

2.1.2. Weak form
For a given parameter 𝜇, the corresponding weak form is described

by

−∫Ω
q(𝜇) · ∇v1 dΩ +∫Ωf (𝜇) · v1 dΩ +∫Γh

h(𝜇) · v1 dΓ = 0, ∀v1 ∈ΘAd,0(Ω),

(3a)

−∫Ω
𝜎(𝜇) ∶ 𝜖(v2) dΩ +∫Ωb(𝜇) · v2 dΩ +∫Γt

t(𝜇) · v2 dΓ = 0, ∀v2 ∈ Ad,0(Ω).

(3b)

Here, ΘAd(Ω;𝜇) = {v ∈ Θ(Ω) | v|Γ𝜃 = 𝜗(𝜇)} and ΘAd,0(Ω) = {v ∈
Θ(Ω) | v|Γ𝜃 = 0} are the spaces which contain the full and homo-
geneous temperature fields;  Ad(Ω; 𝜇) =

{
v ∈  (Ω) | v|Γu = w(𝜇)

}
and  Ad,0(Ω) =

{
v ∈  (Ω) | v|Γu = 0

}
are the spaces which contain

the full and homogeneous displacement fields. The solution to the
parametrized heat conduction problem (3a) is an admissible pair
(𝜃(𝜇), q(𝜇)) ∈ ΘAd(Ω;𝜇) × Ad(Ω;𝜇) that verifies the isotropic linear
constitutive law

q(𝜇) = k(𝜇) · ∇𝜃(𝜇). (4)

Similarly, the solution to the parametrized problem of elasticity is
an admissible pair (u(𝜇), 𝜎(𝜇)) ∈  Ad(Ω;𝜇) × Ad(Ω; 𝜇) that verifies the
isotropic linear constitutive law

𝜎(𝜇) = D(𝜇) ∶ 𝜖(u(𝜇)) − D(𝜇) ∶ 𝜖0(𝜃(𝜇)). (5)

By substituting (4) into (3a) and (5) into (3b), the parametric prob-
lem of thermoelasticity can be written in the following primal varia-
tional form: for any 𝜇 ∈ , find 𝜃(𝜇) ∈ ΘAd(Ω;𝜇) and u(𝜇) ∈  Ad(Ω; 𝜇)
such that
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