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A B S T R A C T

This paper presents topology optimization of viscoelastic damping layers attached to shell structures for atten-
uating the amplitude of transient response under dynamic loads. The transient response is evaluated using an
implicit time integration scheme. Dynamic performance indices are defined to measure the transient response. In
the optimization formulation, three different types of the performance indices are considered as the objective
function. The density-based topology optimization scheme is applied to find the optimal distribution of the
viscoelastic material. The artificial densities of the shell elements of the viscoelastic layers are taken as the design
variables. The constraint is the maximum volume fraction of the viscoelastic material. A sensitivity analysis
method of the transient response is developed based on the adjoint variable method. Several numerical examples
are presented to demonstrate the validity of the proposed method. The transient responses of the optimized
structures are compared to those of the uniformly distributed structures to show the effectiveness of the proposed
method. Also, the influences of the performance indices are discussed.

1. Introduction

Shell structures are widely used in civil, automotive and aerospace
engineering applications. The structures are often excited by dynamic
loadings such as impact, shock and seismic loadings. In general, the shell
structures are thin and light. Therefore, the dynamic loadings cause severe
undesired vibrations, which may lead to the considerable noise level,
discomfort and damage of machines. Thus, the vibration control becomes
crucial in designing shell structures. For the vibration control, passive
damping treatment has been widely applied to attenuate the structural
vibration. The passive method generally utilizes viscoelastic materials due
to its simple implementation, low cost and relatively high damping capa-
bility. For the shell structures, a viscoelastic layer is attached to the base
shell structure to provide damping capability against its vibration. How-
ever, a full-coverage damping treatment is not practical since it may add
excessive mass to the base shell structure. Therefore, it can be achieved by
partially covering the damping layer as patch-forms. The schematic illus-
tration of the viscoelastically damped shell structure is shown in Fig. 1,
which consists of the partially covered viscoelastic layer and the base shell
structure. In order to find the best layout of the viscoelastic layer, the
design problem may be formulated as a topology optimization problem.

Topology optimization is regarded as a powerful tool for developing
novel conceptual designs. Since its introduction by Bendsøe and Kikuchi

[1], topology optimization has also been applied to the design of damped
structures e.g., rubber isolators [2], multi-material design [3,4], micro-
structure design [5,6], etc. In addition, it has been used in designing
damped shell structures. Kim et al. [7] proposed a topology optimization
approach to design optimal damping layouts for suppressing the reso-
nance vibration of shell structures. The optimized damping layouts are
also experimentally validated. Kang et al. [8] studied the optimal dis-
tribution of damping material of shell structures under harmonic exci-
tations. This work was extended to simultaneous optimization of the
damping and the host layers [9]. Topology optimization for minimizing
sound radiation of shell structures was presented in Refs. [10,11].

The above-mentioned studies mainly focused on frequency responses
of damped structures. However, transient responses should be considered
when structures are excited by a suddenly applied loading. The topology
optimization for time domain response has been also studied by many
researchers [12]. Min et al. [13] developed a topology optimization
approach to minimizing the dynamic compliance of elastic structures
under dynamic loads. Zhao and Wang [14] investigated the model
reduction method for the computational efficiency in dynamic response
topology optimization problems. Dahl et al. [15] proposed a topology
optimization method for structural wave propagation based on the
transient response analysis. The equivalent static load (ESL) method was
proposed by Refs. [16,17] for topology optimization in dynamic
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problems. Nakshatrala and Tortorelli studied topology optimization of
elastoplastic systems [18] and multi-scale topology optimization [19]. Le
et al. [20] studied topology optimization of material microstructure
design for linear elastodynamic energy management. Yan et al. [21]
studied optimal topology design of damped plate structures subjected to
initial excitations. Also, the active vibration control of shell structures
with piezoelectric actuators was proposed in Ref. [22].

The above studies of topology optimization for transient response
consider only viscous damping. The viscous damping depends on the
instantaneous velocity only. However, the viscous damping is rarely
physically present in many dynamic systems [23]. Therefore, the visco-
elastic damping, also referred to as non-viscous damping, should be
considered in viscoelastically damped structures. There are few studies
on the topology optimization of structures including viscoelastic material
based on time domain analysis. James and Waisman [24] proposed a
topology optimization approach considering creep deformation of the
viscoelastic material to improve long-term structural performance. More
recently, Yun and Youn [25] proposed a multi-material topology opti-
mization approach of viscoelastically damped structures under
time-dependent loading. These two studies only considered quasi-static
responses while ignoring the dynamic or inertia effects.

This paper presents a topology optimization approach for designing
viscoelastically damped shell structures subjected to dynamic loads.
There have been no previous works that have dealt this problem in a
systematic way. The shell structures are discretized with finite elements,
and the transient response is evaluated using an implicit time integration
scheme. Three different kinds of dynamic performance indices are
defined to measure the transient response over a specified time interval.
The optimization problem is formulated to find the optimal material
distribution of the viscoelastic damping layer for minimizing the per-
formance indices.

The remainder of this paper is organized as follows; in Section 2, the
viscoelasticity and the transient response analysis are introduced. The
finite element formulation and time integration scheme are presented. In
Section 3, dynamic performance indices are defined. Then, topology
optimization problem is formulated based on the density approach. The
sensitivity analysis procedure is also presented. In Section 4, several
numerical examples are presented, and the optimized results are dis-
cussed. Finally, concluding remarks are provided in Section 5.

2. Structural transient response analysis

2.1. Constitutive equation for the viscoelastic material

Viscoelastic materials exhibit both viscous and elastic characteristics.
From the Boltzmann superposition principle [26], the uniaxial
isothermal stress-strain relation for the viscoelastic material is given by

σðtÞ ¼ ∫ t
0Eðt � sÞ ∂εðsÞ∂s ds; (1)

where s denotes any arbitrary time between time 0 and t. This relation
implies that the response of the material is influenced by the past history

of motion. The time dependent relaxation modulus EðtÞ is modeled using
an analogy with the combinations of spring elements (for elasticity) and
dashpots (for viscosity). There are large number combinations of springs
and dashpots. Among them, the relaxation modulus is typically modeled
by the generalized Maxwell model as illustrated in Fig. 2. The model
consists ofm different Maxwell elements (spring-dashpot elements) and a
spring element arranged in parallel. The spring constants are denoted by
E∞ and Ej, and the viscosity in the dashpot is given by ηj. Defining the
relaxation time of each Maxwell element as τj ¼ ηj=Ej, the relaxation
modulus EðtÞ is mathematically represented by using Prony series ex-
pansions as follows:

EðtÞ ¼ E∞ þ
Xm
j¼1

Eje
�t=τj : (2)

The number of terms in the Prony series m is selected by designers to
fit the material relaxation test data.

In the same manner as the uniaxial relationship, the constitutive
equation for the three-dimensional case is defined as

σðtÞ ¼ ∫ t
0Cðt � sÞ ∂εðsÞ∂s ds; (3)

where CðtÞ is the three dimensional constitutive matrix for the visco-
elastic material. For the isotropic viscoelastic material assuming a con-
stant Poisson's ratio, the constitutive equation becomes

σðtÞ ¼ CV∫
t
0gðt � sÞ ∂εðsÞ∂s ds; (4)

where CV is the purely elastic constitutive matrix of the long term
modulus E∞ and the Poisson's ratio ν. The normalized relaxationmodulus
gðtÞ (i.e., gðtÞ ¼ EðtÞ=E∞) is defined as

gðtÞ ¼ 1þ
Xm
j¼1

gje
�t=τj : (5)

2.2. Transient response finite element analysis – spatial discretization

The damped shell structure is discretized with two-layered shell ele-
ments as shown in Fig. 3. The finite element nodes are placed on the
reference surface, which is a boundary between the viscoelastic layer and
the base structure. Then the mass matrix and the stiffness matrix can be
obtained by combining the matrices of each layer.

The element mass matrices of both the structural material and the
viscoelastic material are defined as

Me
S ¼ ∫ Ωe

ρSN
TNdV andMe

V ¼ ∫ Ωe
ρVN

TNdV ; (6)

where ρ is the material density and N is the shape function matrix. Then,

Fig. 1. Schematic illustration of shell structure with partially covered viscoelastic layer.

Fig. 2. Generalized Maxwell model.
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