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ARTICLE INFO ABSTRACT
Keywords: A computational framework relying on a non-iterative mesh generation algorithm is introduced for modeling
CISAMR

moving boundary transient diffusion problems, with a special focus on its application for simulating corrosion
phenomena. In this approach, the Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR)
technique is employed to adapt the finite element mesh to the evolving morphology of the problem. CISAMR
combines customized h-adaptivity, r-adaptivity, and sub-triangulation algorithms to transform a simple struc-
tured mesh into a high quality hybrid conforming mesh composed of rectangular and triangular elements. A key
advantage of this method for modeling moving boundary problems is that only the elements located along the
moving boundary must be modified to regenerate a conforming mesh at each step. This feature not only facil-
itates the remeshing process but also reduces the error associated with projecting nodal values of the solution
to the new mesh. After a convergence study, we verify the accuracy of CISAMR for modeling pitting corrosion
problems by comparing results with analytical solutions and phase field simulations. Additional examples are
also provided to show the application of CISAMR for simulating corrosion problems with intricate morphologies.
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1. Introduction

Several physical phenomena including the phase transformation are
formulated as transient moving boundary problems governed by the
diffusion law [1,2], which are also referred to as Stefan problems [3,4].
A major challenge toward simulating such problems using the finite
element method (FEM) is the evolution of the domain morphology,
which necessitates continuous updating of the mesh structure to con-
form to the moving boundary [5,6]. Varying robust algorithms can be
employed to generate finite element (FE) meshes with proper element
aspect ratios and negligible discretization error, among which we can
mention the Delaunay triangulation [7-9], advancing front [10,11],
quadtree/octree-based techniques [12-14], marching cubes [15], and
the dual contouring method [16-18]. However, the computational cost
associated with reconstructing a new conforming mesh at each time
step for simulating moving boundary problems using these methods
could be overwhelming. This is in part due to the iterative/optimization
phase involved in such algorithms to improve the aspect ratios of ele-
ments. For example, a Laplacian smoothing is often used in quadtree-
based algorithms to create elements with proper aspect ratios by iter-
atively relocating the mesh nodes [13,19]. Another challenge associ-

ated with the remeshing process is the requirement to project the solu-
tion between the nodes of the old (deformed) and new (reconstructed)
meshes that coexist at each time step [20]. This nodal projection not
only imposes an additional computational burden but also deterio-
rates the accuracy and convergence rate by undermining the super-
convergence feature of FEM [21].

Alternative techniques such as the Arbitrary Lagrangian-Eulerian
(ALE) method [22-25] can be implemented to evolve a conforming
mesh during an FE simulation without remeshing the entire domain at
each time step. In the ALE method, after evaluating the updated mor-
phology of the domain at each time step, techniques such as the relo-
cation of mesh nodes [26,27] and edge swapping [28] are employed
to improve the quality of elements (i.e., their shape and aspect ratio)
[29]. For problems with significant geometrical changes, a combina-
tion of smoothing algorithms and modifying the interface velocity has
been used to prevent the element tangling issue [30]. Despite all these
treatments, remeshing may still be required after a certain number of
time steps for problems with intricate evolving geometries and/or those
undergoing large deformations [26,31]. Automatic mesh moving tech-
niques, often combined with interface-tracking and space-time meth-
ods [32,33], have also been introduced to limit the burden of remesh-
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ing for modeling moving boundary problems [34-38]. Similar to the
ALE method, iterative nodal repositioning, edge/face swap, and mesh
optimization techniques have been used in such methods to avoid the
creation of tangling elements and improve their aspect ratios [39-41].
Recently, Gawlik and Lew [42] have introduced a robust technique
for modeling 2D moving boundary problems that employs an iterative
relaxation algorithm to adapt a stationary background mesh (universal
mesh) to the evolving interface geometry [43,44].

To obviate the challenges associated with the remeshing process,
one can implement meshfree techniques such as the smoothed particle
hydrodynamics [45,46], element-free Galerkin method [47,48], expo-
nential basis functions meshfree technique [49,50], and the Green’s
discrete transformation method [51]. The idea of making the solution
field independent of the mesh structure can also be incorporated in
the FE formulation by appropriate enrichment strategies [52-54]. The
eXtended/Generalized FEM (X/GFEM) [55-59] is one of the most pop-
ular techniques in this category that relies on enrichment functions con-
structed using the partition of unity method to reconstruct strong/weak
discontinuities in nonconforming elements. This method has success-
fully been implemented for modeling a variety of moving boundary
problems, e.g., [60-67]. Compared to remeshing and ALE techniques,
X/GFEM provides a major advantage by allowing the use of a stationary
nonconforming mesh for modeling problems with evolving morpholo-
gies. XFEM has also been combined with the grid-based particle method
[68] to tracks interface motion with meshless particles and handle topo-
logical changes such as boundary merging [69]. It is worth mentioning
that additional treatments might be required in enriched methods such
as X/GFEM to resolve implementation issues such as the high condition
number of the stiffness matrix [70,71] and enforcing Dirichlet boundary
conditions [72,73].

Another approach that can eliminate the need to create conforming
meshes during the FE simulation of moving boundary problems is the
phase field method [74,75]. In this method, a diffuse interface model
is employed to approximate the strong discontinuity across the inter-
face as a continuously varying function with a pre-defined thickness
[76]. The phase field method has been employed to simulate a vari-
ety of moving boundary problems, such as the solidification [77,78],
dislocation interactions [79,80], and corrosion [81-83]. While elimi-
nating the need to generate conforming meshes, the phase field method
requires a highly refined (nonconforming) mesh in the vicinity of the
diffuse interface to accurately approximate the sharp gradients of the
fields in this region. Further, an additional phase field variable must be
incorporated in the problem formulation to implicitly track the inter-
face location [76], which leads to a higher computational cost com-
pared to sharp interface models. The peridynamics (PD) model intro-
duced in Refs. [84,85] is an alternative diffuse interface model that
can be employed for simulating moving boundary problems. In the PD
model, the domain is discretized using a structured grid, where each
node interacts with its neighboring nodes within a certain distance. The
phase transformation is achieved by monitoring the concentration asso-
ciated with each node, which unlike the phase field method does not
use an additional variable to track the interface location.

In this manuscript, we introduce a computational framework rely-
ing on a non-iterative mesh generation algorithm named Conforming
to Interface Structured Adaptive Mesh Refinement (CISAMR) [86] for
simulating moving boundary transient diffusion problems. The concept
behind this approach is similar to the universal meshing method [42],
as we regenerate the FE model after a few time steps by transforming
a background mesh into a conforming mesh. However, CISAMR per-
forms this transformation using a non-iterative algorithm (versus the
iterative relaxation approach in universal remeshing) that only affects
the locations of nodes of background elements intersecting with the
moving interface. This algorithm generates a hybrid conforming mesh
composed of quadrilateral and triangular elements with proper aspect
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ratios. An h-adaptive refinement phase is incorporated in the CISAMR
algorithm that enables reducing the geometric discretization error and
approximating sharp gradients along the moving interface more accu-
rately. This technique can handle moving boundary problems under-
going large changes in the domain morphology without compromis-
ing the mesh quality. Among a variety of transient diffusion problems
with evolving geometries, in this work we focus on the application of
CISAMR for simulating corrosion phenomena and in particular the pit-
ting corrosion [87,88]. It must be noted that although the focus of the
current manuscript is on modeling 2D problems, there is no inherent
limitation for expanding the CISAMR non-iterative algorithm to 3D.

The remainder of this article is structured as follows. In Section 2
we introduce strong and weak forms of transient diffusion governing
equations, together with the special considerations required for model-
ing the pitting corrosion phenomenon [89,90]. A brief overview of the
CISAMR algorithm and the algorithmic aspects pertaining to its applica-
tion for modeling moving boundary problems are presented in Section
3. Several numerical examples, including a detailed convergence study,
are presented in Section 4 to verify the accuracy of CISAMR simulations
through comparison with analytical results and phase field simulations.
We also show the application of this method for simulating several geo-
metrically elaborate corrosion problems, such as the electropolishing
and pitting corrosion phenomena. Final concluding remarks are pre-
sented in Section 5.

2. Governing equations

Consider an open domain Q = Q U<y consisting of solid Q; and

fluid Q phases, with the boundary Q\Q =T and the outward unit
normal vector n. The domain boundary is composed of three non-
overlapping partitions I'p, I'y, and I'g, corresponding to the Dirichlet,
Neumann, and Robin boundary conditions, respectively. Also, I's refers
to the interface between the fluid and the solid phases, which moves
with velocity v during the transient diffusion phenomenon. The strong
form of governing equations describing this process are given by: Find
the transient field c(x, t) such that

% =DV2c(x, t) in Q;
c(x,0) =¢y in Qf
c(X,t) = Coliq in Q a
cx,t)=c on I'p
Ve(x,t)-n=q on I'y
—DVc(x,t) -n+he(x,t) =g on I'g,

where D is the diffusivity, c is the initial distribution of the field, ¢ is
the prescribed value of the field along I'p, q is the applied flux along
I'y, and h and g are problem-specific constants.

While (1) can be employed for modeling a variety of moving bound-
ary problems governed by the diffusion law, in the current manuscript
we focus on the pitting corrosion phenomenon as the physical appli-
cation. Pitting corrosion is the localized degradation of a metal due to
the partial breakdown of the passive film protecting its surface against
a corrosive environment [88,91]. Although high strength alloys such as
stainless steel and 7xxx-series aluminum alloys are resistant to uniform
corrosion, they are susceptible to pitting corrosion in environments with
aggressive anions such as chloride. Pitting corrosion is devastating not
only due to the mass loss caused by reverse metallurgical processes
but also because growing pits induce significant stress concentrations
that accelerates the crack nucleation and reduces the fatigue life [92].
Fig. 1 schematically illustrates the domain of a pitting corrosion prob-
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