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A B S T R A C T

The transfer of variables between distinct spatial domains is a problem shared by many research fields. Among
other applications, it may be required for visualization purposes or for intermediate analysis of a process. In any
case, two important factors must be considered: accuracy and computational performance. The accuracy becomes
more important when the results have an impact on the subsequent stages of the process' analysis, as it could lead
to incorrect results. The computational performance is a permanent requirement due to the ever-increasing
complexity of the analysed processes. The aim of this work is to present a new remapping method, based on
Dual Kriging interpolation, developed to enable accurate and efficient variable transfer operations between two
different domains, discretized with hexahedral finite elements. Two strategies are proposed, which take into
account different selections of interpolation points and are based on specific Finite Element Method features. They
are compared with the Incremental Volumetric Remapping method in two remapping examples, one of which
includes a trimming operation, highlighting their advantages and limitations. The results show that the Dual
Kriging remapping method, combined with a 2D selection strategy for the donor points, can contribute to increase
the accuracy of the state variables remapping operation, particularly when they present a strong gradient along
the stacking direction.

1. Introduction

The Finite ElementMethod (FEM) emerged in the sixties, enabling the
solution of problems that could not be solved analytically [1,2]. What-
ever the application field, FEM requires the partition of the spatial
domain into finite elements, which define the mesh that approximates
the original domain. The type of finite elements used depends on the
application field or problem (e.g. Ref. [3]), and varies between 1D, 2D,
and 3D, using interpolation functions of different degrees. The linear
isoparametric hexahedral and tetrahedral finite elements are commonly
used in 3D simulations, adopting different mesh topologies.

The solution of nonlinear problems also requires the division of the
temporal domain to take into account time dependant variables related to
geometrical, material or boundary conditions nonlinearities [4]. Typi-
cally, resorting to more divisions – spatial and temporal – increases the
accuracy of the numerical results, at the cost of the computational per-
formance (e.g. Refs. [5,6]). Therefore, it is always necessary to find the
best equilibrium between results accuracy and computational effort. In
terms of spatial discretization, the definition of zones with different mesh
sizes can be performed either in the pre-processing stage or during the

numerical simulation. The definition of different zones in the
pre-processing is usually carried out manually, which contributes to an
increase of the time required for this stage. On the other hand, during the
numerical simulation, the definition of different zones requires the
application of adaptive mesh refinement/remeshing algorithms (e.g.
Refs. [7,8]), in several temporal increments. In fact, adaptive mesh
refinement algorithms are commonly used to overcome problems of
excessive distortion/deformation of the finite elements, which occur in
different forming processes [7,9], such as forging [10,11] and sheet
metal forming [12]. The adaptive mesh refinement is usually performed
by one of three methods: p-adaptive (change of the interpolation degree),
h-adaptive (change of the element size), r-adaptive (change of the nodes'
location); or by a combination of them [8]. The improvement of these
methods is an up to date research topic in computational mechanics [13],
since small improvements have a considerable impact on computational
performance, as they can be applied several times during the simulation.

The adoption of adaptive mesh refinement algorithms involves a
remapping step, i.e. the transfer of variables between different spatial
discretizations [14,15], which can present a strong influence on the ac-
curacy of the results and computational efficiency. Nonetheless, in some
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cases the zone to be remapped can be narrow, as in the numerical
analysis of trimming operations involved in some multi-stage forming
processes. Typically, these operations consist in the geometrical trim-
ming of the FE mesh (e.g. Ref. [10]), which is also the focus of this work.
Thus, after each trimming operation, it is also necessary to perform a
remapping procedure for the numerical variables involved in the subse-
quent forming steps. In this case, the impact of the selected remapping
method on the computational efficiency is reduced, but its accuracy can
have a strong influence on the results of the subsequent numerical
simulation. When using the FEM, it can be necessary to transfer the nodal
variables (primary unknowns), such as forces and displacements; and the
state variables (secondary unknowns), which are evaluated in the inte-
gration points (typically Gauss points), such as the stress and strain state.
The former are usually continuous while the latter are discontinuous (e.g.
Ref. [7]). The current work is mainly focused on the transfer of state
variables, evaluated in the integration points.

Jiao and Health [14], divide the remapping methods into four major
groups. The first group refers to pointwise interpolation and extrapola-
tion methods, such that the variables are transferred using a function that
interpolates/extrapolates the variables from the donor (old) mesh to the
target (new), in one or more stages. The pointwise interpolation can be
categorized into two types: (i) use of the same shape function as the one
for the donor mesh (sometimes referred to as consistent interpolation or
inverse isoparametric mapping (e.g. Refs. [16,17])) and (ii) use of basis
functions of higher order than the one of the donor basis. According to
Baptista [18], taking into account the mathematical characteristics of
these methods, this group can also include the ones based on the appli-
cation of the moving least squares [15,19] and the Superconvergent
Patch Recovery methods, developed by Zienkiewicz and Zhu [20]. The
second group refers to Area/Volume weighted averaging methods (also
referred as Finite Volume Transfer Method in Ref. [11]), which uses a
transfer function that is evaluated based on the area/volume of inter-
section between the donor and the target FE. The corresponding area-
s/volumes act as a weighting factor defining the contribution of each
donor element to the target one (e.g. Refs. [21,22]). The third group
refers to Mortar element methods, which are general techniques for
projecting data at interfaces between two or more non-conforming sub-
domains [11]. From a mathematical point of view, this method consists
in the minimization of a weighted residual, where the weight functions
are usually chosen from the space spanned by the basis functions of the
mortar side [23]. The last group refers to specialized methods, which are
designed for specific applications and do not fall directly into the above
categories, but frequently are variants or combinations of them. This
fourth group includes the direct allocation to the target point of the
closest donor point [24], the use of different methods according to the
type of variable [9], and adaptations of the interpolation/extrapolation
and area/volume weighted averaging methods; by including constraints
[25]; and/or considering specific features of the application domain or
problem [26,27].

The accurate transfer of variables between different spatial dis-
cretizations is imperative, independently of the remapping method
adopted. Moreover, its computational performance is particularly
important when the procedure is performed several times, while the error
is accumulated to the subsequent stages (e.g. Refs. [7,11]). In fact, the
remapping operation can introduce errors due to the approximations
used to estimate the values for the target mesh. In order to try to control
and minimize the unavoidable errors when performing remapping op-
erations, several authors [11,14,15,17,25] point out some desirable
characteristics. The method should be self-consistent such that when the
target and the donor point are coincident, the transfer remapping func-
tion reduces to the identity operator (null error). The interpolation/
extrapolation methods that resort to the donor shape functions cannot
guarantee, a priori, this condition [15]. On the contrary, Area/Volume
weighted averaging methods automatically verify this self-consistency
condition. The method should also guarantee the locality, i.e. the
remapped value in a target point should only be affected by the variables

of the donor mesh in a region of influence. This assures the preservation
of discontinuities, related with material or geometric interfaces, which
must also be present in the remapped mesh. However, due to the discrete
and approximated natured of the remapping operations, it is always ex-
pected some degradation (smoothing) of the variable value when severe
gradients are present. Nonetheless, the smoothing should be minimized
in order to preserve, as accurately as possible, the gradients of the donor
mesh. On the other hand, the remappingmethod can also lead to spurious
local extreme values, which are non-physical and result in the degrada-
tion of the numerical simulation result. Accordingly, the remapping al-
gorithm should allow for the inclusion of some constraints, such as
consistency of equilibrium or motion equations [25], consistency be-
tween the displacement field and the stress state or boundary condi-
tions [17].

In order to take advantage of the characteristics of these applications,
several specialized remapping methods have been proposed, in order to
find the best equilibrium between accuracy and computational perfor-
mance. One example is the application of the moving least squares
method, proposed by Rashid [15], based on a transfer function. It at-
tempts to force the equality between the variable field in a volumetric
domain of the donor and of the target mesh, assuming that each donor
integration point has constant state variables in a predefined region. Jiao
and Heath [14] present a general method, named Common Refinement,
which is based on the intersection of the donor and target mesh in order
to define a third mesh, used as an auxiliary for the transfer procedure.
The main advantage of this method is that it allows the accurate inte-
gration of the transfer function, which depends on the shape functions of
the target and donor meshes. However, it requires a robust and expedi-
tious algorithm for mesh intersection, which is considerably challenging
to attain when working with solid hexahedral finite elements. In this
context, also the Incremental Volumetric Remapping (IVR) method was
developed and applied, specifically for the transfer of variables between
meshes composed of linear isoparametric hexahedrons [18]. This
volume-weighted averaging method assumes that each donor integration
point has constant state variables in a predefined region [15]. Being a
volume-weighted averaging method, some of the desirable characteris-
tics are inherently verified (self-consistency, locality, and inexistence of
spurious local extrema values), which makes it particularly interesting
for FEM analysis.

The IVR method has been previously implemented in the in-house
code DD3TRIM [18], which has been specifically developed for per-
forming geometrical trimming operations of 3D meshes, composed by
linear isoparametric hexahedrons. In sheet metal forming operations, this
type of elements is typically used with a selective reduced integration
scheme [28]. Thus, for each element, the state variables are evaluated in
eight different integration points, also called Gauss Points (GPs), since
their spatial positions in the finite element's natural coordinates are
defined by the Gauss Quadrature Rule [4]. The accurate transfer of the
state variables is fundamental to enable the proper numerical simulation
of forming process, involving trimming operations.

In previous works [18,29,30], the performance of the IVR algorithm
was compared with the classic interpolation/extrapolationmethod, using
a transfer function based on the shape function of the linear iso-
parametric elements. Additionally, it was compared with the moving
least square interpolation method, using an exponential based curve as
weight function [18,29]. The results show that the error associated to the
IVR is lower when compared to these other two methods, particularly
when increasing the number of consecutive remapping operations. In
addition, the IVR method is robust in critical situations, such as poor
geometrical definition of the mesh domain boundaries, where some
nodes of the target mesh fall outside the donor mesh. However, con-
cerning the computational cost, it was observed that the classical
extrapolation/interpolation method was clearly the fastest, while the IVR
method and the one based on moving least squares interpolation pre-
sented similar computational costs [18,29].

This study presents a new remapping method dedicated to finite
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