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a b s t r a c t

Recent studies analyze the behavior of advanced shell structures, like foldable, multistable or morphing
shell structures. Simulating a thin foldable curved structure is not a trivial task: the structure may go
through many snapping transitions from a stable configuration to another. Then, one could claim arc-
length methods or use a dynamic approach to perform such simulations. This work presents a geome-
trically exact shell model for nonlinear dynamic analysis of shells. An updated Lagrangian framework is
used for describing kinematics. Several numerical examples of folding a thin dome are presented,
including creased shells. The triangular shell finite element used offers great flexibility for the generation
of the unstructured curved meshes, as well as great results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Curved shells can be found in many natural and man-made
structures. Shells have high structural efficiency due to their cur-
vature, as bending and stretching are coupled to handle defor-
mations, making them energetically costly to deform. Due to their
high strength/weight ratio, ability to shelter inner components
and a good esthetic value, shells are important structures for
engineering applications. Many examples can be listed: pipes, beer
cans, eggshells, skulls, bells, bowls, tents, corneas, lens, wine
glasses, tanks, silos, domes, roofs, structures of airplanes, sub-
marines, ships, rockets, missiles, etc.

The study of shells dates back to the nineteenth century, when
Love [1] presented important contributions to the thin shell the-
ory. He applied the Kirchhoff's assumptions [2], originally derived
to thin plate bending theory, to the shell theory, together with the
assumptions of small deflection and small thickness of the shell.
Similar first order approximation shell theories were presented by
Donnell [3], Sanders [4] and Flügge [5].

A second order approximation shell theory was derived by
Reissner [6,7], where the assumptions on the preservation of the
normals and that the transverse normal strain may be neglected
were abandoned, thus considering the deformations caused by the
transverse shear forces.

The geometrically nonlinear shell theory had considerable
contributions by authors like Mushtari [8], Sanders [9], Naghdi and

Nordgren [10], Vlasov [11], Simmonds and Danielson [12], Pimenta
[13], Ibrahimbegovic [14,15] and Libai and Simmonds [16]. For-
mulations on nonlinear dynamic shell structures were presented
by Simo et al. [17], Kuhl and Ramm [18], Brank et al. [19], Campello
et al. [20], among others. Dynamic instability was analyzed by
authors like Brank et al. [21] and Delaplace et al. [22]. The
numerical time integration recommended therein is probably the
simplest way to introduce some energy dissipation in nonlinear
dynamic problems, keeping the second order accuracy of the ori-
ginal Newmark algorithm. We would like to compare the exam-
ples presented therein with our formulation in future works. In
[20], general hyperelastic materials can be used for nonlinear
dynamic analysis of shells with rotational degrees-of-freedom.

Recent studies analyze the behavior of advanced shell struc-
tures, like foldable structures [23,24] and deployable structures
[25,26], structures that can be transported in a compact form and
deployed to their full extent when needed, metamaterials [27,28],
whose unusual properties derive from their structure, rather from
their composition, morphing shell structures [29–31], shells cap-
able of undergoing large changes in shape, whilst remaining
within the material's elastic range, and multistable structures
[32–34], which have more than one stable state and can move
elastically from one state to another.

Following the creased hemisphere presented in [34], this paper
presents a dynamic formulation for simulating that hemisphere
and other similar shell structures. The presented formulation is
geometrically exact for nonlinear applications involving large
displacements and large rotations. We emphasize that the main
novelty of present work is, contrary to our previous paper [20], the
establishment of the weak form for dynamic shell models by using
the symmetric Principle of Virtual Work (PVW), together with the
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update description of rotation using Rodrigues parameters. This
was motivated by the objective of studying the stability of shell
structures, particularly the creased-domes. For that, it is desirable
to establish a weak form that can be obtained from a potential.
Then, the stability assessment is more direct. We intend to make a
deeper study on future works by tracking the evolution of the
system natural frequencies. In this context, the Lyapunov stability
criterion can be claimed, such as previously done for cable-like
structures in [35]. Furthermore, when addressing the PVW to
establish the weak form, the static problem becomes a particular
case of dynamics, recovering the results from [20,36]. We need
that to compare dynamics to statics, as performed in the present
work of numerical examples.

The scope of this work is to present a numerical procedure to
analyze challenging shell problems (from a numerical point of
view). The triangular finite element used, the T6-3i [37], offers
great flexibility for unstructured curved meshes generation and
presented excellent results. The hemisphere simulations were
repeated in LS-Dyna, a commercial finite element package to
provide a comparison with the simulations using T6-3i elements.

2. Shell modeling

2.1. Kinematics

The shell model presented here is an extension of the geome-
trically exact formulation derived in [38]. The finite shell element
devised in [38], the T6-3i element, is triangular, allowing robust and
versatile numerical discretization. The formulation is pure-
displacement based, where no mixed or hybrid types of variables
were used, it is free of locking effects due to the incompatibility of
the element to the rotations field, and the degrees of freedom used
are simple and physically meaningful: the displacements and rota-
tions of the shell director. The kinematics is of the Reissner–Mindlin
type, which takes into account the effects of shear deformations.

In this work, the rotation tensor Q is expressed in terms of the
Rodrigues rotation parameters, as in [20]. The parameterization
with the Rodrigues rotation vector leads to simpler and more
efficient expressions compared to the Euler parameterization, as it
is totally free of trigonometric functions.

The Rodrigues rotation vector is defined by [39]:

α¼ tan ðθ=2Þ
θ=2

θ ð1Þ

where θ is the classical Euler rotation vector representing an
arbitrary finite rotation on 3D space and θ¼ JθJ is its magnitude
—the Euler rotation angle. The rotation tensor Q expressed in
terms of the Rodrigues rotation parameter α can therefore be
written as [38]:

Q ¼ Iþ 4
4þα2 Aþ1

2
A2

� �
ð2Þ

with α¼ JαJ , and A¼ skewðαÞ.1
The angular velocity operator Ω¼ _QQ T is the skew-symmetric

spin tensor associated to the rotation Q . Its axial vector ω¼ axial
ðΩÞ is the spin vector or angular velocity vector. Using Rodrigues
parameters one can obtain:

ω¼Ξ _α ð3Þ
where the tensor Ξ relates ω to the time derivative of α and is

given by:

Ξ¼ 4
4þα2 Iþ1

2
A

� �
ð4Þ

The back-rotated counterpart of ω can be obtained by
ωr ¼Q Tω¼ΞT _α , where the notation with a superscript “r”
defines back-rotated quantities. Upon time differentiating ω, one
can obtain the angular acceleration vector:

_ω ¼ _Ξ _αþΞ €α ð5Þ
with

_Ξ ¼ 1
2

4
4þα2

_A� α � _αð ÞΞ
h i

ð6Þ

In the parameterization with Rodrigues rotation vector, due to
the definition in Eq. (1), the rotation angle must be restricted to
�πoθoπ. However, with an updated formulation, this is not a
limitation as rotations may not exceed π within a single time
increment. Using an updated-Lagrangian framework, displace-
ments and rotations must be updated after each time-step.

Fig. 1 (adapted from [36]) shows the shell updated model. A
plane shell mid-surface is assumed at the initial reference con-
figuration. At this configuration, it is defined a local orthonormal
system er1; e

r
2; e

r
3

� �
, with corresponding coordinates ξ1; ξ2; ζ

� �
. The

vectors erα (α¼ 1;2) are placed on the shell mid-plane and er3 is
normal to this plane.

In this reference configuration, the position ξ of any material
point can be described by the vector field:

ξ¼ ζþar ð7Þ
where the vector ζ ¼ ξαerα describes the position of points on the
reference mid-surface and ar ¼ ζer3 is the shell director, with ζA

H¼ �hb;ht
h i

as the thickness coordinate and h¼ hbþht as the
shell thickness in the reference configuration.

At instant “i”, it is defined a local orthonormal system
ei1; e

i
2; e

i
3

� �
, with eii ¼Qeri (see Fig. 1), with ei3 aligned with the

director at this instant and eiα normal to it. Note that the director is
not necessarily normal to the deformed mid-surface, thus
accounting for first order shear deformations. A general material
point in this configuration can be described by:

xi ¼ ziþai ð8Þ
where zi ¼ ẑ ξα

� �
is the position of a material point on the middle

surface and ai is the director at this point, obtained by ai ¼Qar .
Similarly, the position of any material point in the configuration

at instant “iþ1”, the end of the present time-step, is described by:

xiþ1 ¼ ziþ1þaiþ1 ð9Þ
Here aiþ1 ¼QΔai, where QΔ is the tensor representing the

rotation between instants “i” and “iþ1”. The index “Δ” refers to
quantities relating the instants “iþ1” and “i”. As ai ¼ ζei3, then,
xiþ1 ¼ ziþ1þζQΔei3, and time-differentiating this expression, one
can obtain the velocity vector of any material point as:

_xiþ1 ¼ _z iþ1þζ _Q
Δ
ei3 ¼ _z iþ1þζω� eiþ1

3 ð10Þ
The displacement associated with any point of the middle

plane is given by vector u, and can be updated by:

uiþ1 ¼ uiþuΔ ð11Þ
The rotations can be updated by [20]:

αiþ1 ¼ 4
4�αΔ � αi

αΔþαiþ1
2
αΔ � αi

� �
ð12Þ

where αΔ is the rotation vector occurred from configuration “i” to
“iþ1”.

1 The skewðvÞ function transforms a vector vAV3 in a skew-symmetric tensor
V , whose axial vector is v. The axialðVÞ function transforms V in its axial vector v.
Let two vectors v, w AV3, the cross product of these vectors gives v �w¼ Vw.
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