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a b s t r a c t

In this work we present the bulk-surface finite element method (BSFEM) for solving coupled systems of
bulk-surface reaction–diffusion equations (BSRDEs) on stationary volumes. Such systems of coupled
bulk-surface partial differential equations arise naturally in biological applications and fluid dynamics,
for example, in modelling of cellular dynamics in cell motility and transport and diffusion of surfactants
in two phase flows. In this proposed framework, we define the surface triangulation as a collection of the
faces of the elements of the bulk triangulation whose vertices lie on the surface. This implies that the
surface triangulation is the trace of the bulk triangulation. As a result, we construct two finite element
spaces for the interior and surface respectively. To discretise in space we use piecewise bilinear elements
and the implicit second order fractional-step θ scheme is employed to discretise in time. Furthermore,
we use the Newton method to treat the nonlinearities. The BSFEM applied to a coupled system of BSRDEs
reveals interesting patterning behaviour. For a set of appropriate model parameter values, the surface
reaction–diffusion system is not able to generate patterns everywhere in the bulk except for a small
region close to the surface while the bulk reaction–diffusion system is able to induce patterning almost
everywhere. Numerical experiments are presented to reveal such patterning processes associated with
reaction–diffusion theory.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many problems in science and engineering are modelled mathe-
matically by systems of partial differential equations (PDEs). Some of
these problems involve coupling surface and interior (bulk) dynamics
resulting in coupled systems of bulk-surface PDEs. Such systems arise
naturally in many fluid dynamics applications and biological pro-
cesses. In developmental biology, for example, it is essential the
emergence and maintenance of polarised states in the form of het-
erogeneous distributions of chemical substances (proteins and lipids).
Examples of such processes include (but are not limited to) the for-
mation of buds in yeast cells and cell polarisation in biological cells
due to responses to external signals through the outer cell membrane
[26,27]. In the context of reaction–diffusion processes, such symmetry
breaking arises when a uniform steady state, stable in the absence of
diffusion, is driven unstable when diffusion is present thereby giving
rise to the formation of spatially inhomogeneous solutions in a pro-
cess now well-known as the Turing diffusion-driven instability [29].
Classical Turing theory requires that one of the chemical species,

typically the inhibitor, diffuses much faster than the other, the activator
resulting in what is known as long-range inhibition, short-range acti-
vation [10,16].

Recently, there has been a surge in studies on models that couple
bulk dynamics to surface dynamics. For example, Rätz and Röger [27]
study symmetry breaking in a bulk-surface reaction–diffusion model
for signalling networks. In this work, a single diffusion partial differ-
ential equation (the heat equation) is formulated inside the bulk of a
cell, while on the cell-surface, a system of two membrane reaction–
diffusion equations is formulated. The bulk and cell-surface mem-
brane are coupled through a Robin-type boundary condition and a
flux term for the membrane system [27]. Elliott and Ranner [8] study a
finite element approach to a sample elliptic problem: a single elliptic
partial differential equation is posed in the bulk and another is posed
on the surface. These are then coupled through Robin-type boundary
conditions. Burman et al. [4] recently developed cut finite element
methods for coupled bulk-surface problems. In this article, single
time-independent elliptic parabolic equations are coupled in the bulk
and surface through non-zero flux boundary conditions. A trace finite
element method has recently been proposed to study a class of cou-
pled bulk-interface transport problems posed on evolving volumes
and surfaces [12]. Again, coupling of the bulk and surface dynamics is
through non-zero boundary conditions. Novak et al. [24] present an
algorithm for solving a diffusion equation on a curved surface coupled
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to a diffusion model in the volume. Checkkin et al. [6] study bulk-
mediated diffusion on planar surfaces. Again, diffusion models are
posed in the bulk and on the surface coupling them through boundary
conditions. In the area of tissue engineering and regenerative medi-
cine, electrospun membrane are useful in applications such as filtra-
tion systems and sensors for chemical detection. Understanding of the
fibres’ surface, bulk and architectural properties is crucial to the suc-
cessful development of integrative technology. Nisbet et al. [23] pre-
sent detailed review on surface and bulk characterisation of electro-
spun membranes of porous and fibrous polymer materials. To explain
the long-range proton translocation along biological membranes,
Medvedev and Stuchebrukhov [22] propose a model that takes into
account the coupled bulk-diffusion that accompanies the migration of
protons on the surface.

In most of the work above, either elliptic or diffusion models in
the bulk have been coupled to surface-elliptic or surface-diffusion
or surface-reaction–diffusion models posed on the surface through
Robin-type boundary conditions [6,8,22–24,26,27]. Here, our focus
is to couple systems of reaction–diffusion equations posed both in
the bulk and on the surface, setting a mathematical and compu-
tational framework to study more complex interactions such as
those observed in cell biology, tissue engineering and regenerative
medicine, developmental biology and biopharmaceutical [6,8,22–
24,26,27].

The coupled system of bulk-surface reaction–diffusion equa-
tions (BSRDEs) may be numerically solved using various dis-
cretisation schemes and techniques. We choose to employ the bulk
finite element method [9] to numerically solve the bulk-reaction–
diffusion system while the surface finite element method [7] is
employed to compute numerical solutions corresponding to the
surface-reaction–diffusion system. The key idea of the finite ele-
ment method is that two finite element spaces are constructed,
the bulk and surface finite element spaces, by taking a set of all
continuous piecewise polynomial functions on each bulk simplex
or boundary face element [8]. The bulk and surface reaction–dif-
fusion systems are coupled through Robin-type boundary condi-
tions. The coupled bulk-surface finite element algorithm is
implemented in deal.II [1].

Other plausible numerical methods for solving such systems
include (but are not limited to) finite volume methods [5], particle
methods using level set descriptions of the surface [11,14] and
closest-point methods [18,19].

Our article is therefore structured as follows. In Section 2 we
present the coupled bulk-surface reaction–diffusion system on sta-
tionary volumes with appropriate boundary conditions coupling the
bulk and surface partial differential equations. Within this section,
we give some specific examples of the applications of the coupled
system of PDEs. The bulk-surface finite element framework is pre-
sented in Section 3. Here we describe how the two finite element
spaces are constructed to enable us to carry out the spatial dis-
cretisation of the model system. We also detail how the bulk and
surface triangulations are carried out. To discretise in time, we use
the fractional-step θ method coupled with the Newton method to
treat nonlinearities arising from the nonlinear reactions. Numerical
experiments are presented in Section 4 where we discuss how bulk
dynamics influence patterning on the surface and vice versa. We
conclude and discuss the implications of our studies in Section 5 as
well as setting foundations for future research.

2. Coupled system of bulk-surface reaction–diffusion equa-
tions (BSRDEs) on stationary volumes

In this section we present our model system which comprises a
system of coupled bulk-surface reaction–diffusion equations
(BSRDEs) posed in a three-dimensional volume as well as on its

surface. We impose boundary conditions on the system of reaction–
diffusion equations in the interior of the volume that couple internal
dynamics to surface dynamics. Since we are interested in closed
surfaces (whose boundary is empty) then the system of reaction–
diffusion system on the surface is devoid of boundary conditions.

2.1. Notation

Let Γ be a closed, compact and smooth hypersurface without
boundary in RNþ1 enclosing a convex volume Ω. Let n denote the
unit outer normal to Γ, and let U be any open subset of RNþ1

containing Γ, then for any function u which is differentiable in U,
we define the tangential gradient on Γ by

∇Γu¼∇u� ∇u � nð Þn;

where � denotes the dot product and ∇ denotes the gradient in
RNþ1. The tangential gradient is the projection of the gradient onto

Fig. 1. An example illustrating how the surface triangulation (bottom row) is
naturally induced by the volume or bulk (top row) triangulation. Part of the domain
has been cut away and shown on the right to reveal some internal mesh structure
[21].

Table 2
Model parameter values used in simulations for Figs. 2–9.

Figure dΩ dΓ

2 1.0 1.0
3 1.0 10.0
5 1.0 20.0
6 10.0 1.0
7 10.0 10.0
8 20.0 10.0
9 20.0 20.0

Table 1
Parameter values for the coupled system of bulk-surface reaction–diffusion equa-
tions (2.1)–(2.6).

a b d α1 α2 β1 β2 κ1 κ2

0.1 0.9 100 5/12 5 5/12 0 0 5
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