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a b s t r a c t

A method for stabilizing the mean-strain hexahedron was described by Krysl (in IJNME 2014). The
technique relied on a sampling of the stabilization energy using the mean-strain quadrature and the full
Gaussian integration rule, which was shown to guarantee consistency and stability. The stabilization
energy was assumed to be generated by a modified constitutive matrix based on the spectral decom-
position. The stabilization required user-selected values of the stabilization parameters. In the present
work we eliminate the arbitrariness of the stabilization parameters. We formulate the technique more
precisely as an assumed-strain method, and we express the stabilization energy in terms of input
parameters of the real material. Finally, we fix the value of the stabilization parameters in a quasi-optimal
manner by linking the stabilization to the bending behavior of the hexahedral element. For simplicity the
developments are limited to linear elasticity, but with an arbitrarily anisotropic elasticity matrix. The
accuracy and convergence characteristics of the present formulations compare favorably with the cap-
abilities of mean-strain and other high-performance hexahedral elements as implemented in Abaqus and
with a number of successful hexahedral and shell elements and we demonstrate that the present ele-
ment performs very well when used with large aspect ratios for thin structures such as plates or shells.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

First-order bricks (hexahedra) tend to be exploited for 3-D analysis
for their efficiency, robustness, and ease-of-use. Eight-node mean-
strain hexahedra seem to be capable of providing both coarse-mesh
accuracy and reliable convergence, and significant progress has been
made over the years in this technology.

We refer to [1,2] for overview of the recent developments. The
main issues for the mean-strain hexahedra are how to achieve at
the same time (i) locking-free response, (ii) good coarse-mesh
accuracy, and (iii) stability. Strictly mean-strain hexahedra achieve
locking-free response, but lose stability. Adding stability, for
instance by treating the so-called hourglassing modes, would tend
to affect locking and accuracy. Coarse-mesh accuracy requires of
the stabilization to not to deteriorate the response of the element
but rather to enhance the ability of the element to accurately
respond to deformations in the hourglassing modes such as
bending or torsion. Puso's hexahedron is a good example of a
successful approach [3].

A method for stabilizing the mean-strain hexahedron that differed
from the then-known approaches was described by Krysl [4]. The
technique relied on a sampling of the stabilization energy using two

quadrature rules, the mean-strain quadrature and the full Gaussian
integration rule. The use of two quadrature rules was shown to
guarantee both consistency and elimination of the hourglassing
modes. The stabilization energy was assumed to be generated by a
modified constitutive matrix based on the spectral decomposition.
The stabilization required user-selected values of stabilization para-
meters, which is in general undesirable.

In the present work we eliminate the arbitrariness of the stabili-
zation parameters. Firstly, in Section 2 we formulate the technique
more precisely as an assumed-strain method. The stabilization energy
is then introduced in Section 3 as a quadratic formwhich is added and
subtracted at the same time: added for strains linked to the dis-
placements and subtracted for the assumed strains. We develop an
argument for the resulting hexahedral element being convergent by
establishing consistency and positive-semi-definiteness of the strain
energy. In Section 4 the parameters of the stabilization material are
expressed in terms of input parameters of the real material in a way
that avoids locking due to volumetric and other constraints (such as
for strongly anisotropic materials). The value of the remaining stabi-
lization parameter (Young's modulus) is fixed in a quasi-optimal
manner by linking the stabilization to the bending behavior of the
hexahedral element. For simplicity the developments are limited to
linear elasticity, but with an arbitrarily anisotropic elasticity matrix.

Section 5 illustrates the performance of the proposed approaches
on a variety of benchmark problems, for isotropic and anisotropic
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material models. Importantly, the coarse-mesh response is sig-
nificantly improved by the choice of the stabilization parameter. This
proves important especially for thin shells and plates, where the
present element is shown to match the performance of specialized
shell and plate elements. The performance of the stabilization is also
tested for highly distorted elements in a vibration problem. The pre-
sent stabilization technique is also shown to work for anisotropic
materials.

The accuracy and convergence characteristics of the present
formulations compare favorably with the capabilities of mean-
strain and other high-performance hexahedral elements as
implemented in Abaqus. In addition, we compare with a number
of successful hexahedral and shell elements and we demonstrate
that the present element performs very well for thin structures
such as plates or shells. Crucially, the hexahedron formulation
presented here eliminates the need for user-selected values of the
stabilization parameters. Together with excellent performance this
makes the present element a good general-purpose hexahedron.

2. Assumed-strain formulation

We will re-derive the mean-strain eight-node hexahedra [5,6]
taking the variational approach. This will make the inclusion of the
stabilization particularly illuminating. We shall take as the starting
point the strain-displacement (de Veubeke) functional

Πðϵ;uÞ ¼Ψ ðϵÞþ
Z
Ω
σ � ϵ�ϵð Þ dΩ�W: ð1Þ

Here

Ψ ðϵÞ ¼
Z
Ω
UðϵÞ dΩ; ð2Þ

is the strain energy, where the energy density UðϵÞ is generated by
the assumed strains ϵ. For instance in linear elasticity we define a
quadratic form of the assumed strains ϵ

UðϵÞ ¼ 1
2 ϵ

TDϵ; ð3Þ
with a symmetric positive definite constitutive matrix D. The
strains are represented here ϵ¼ ½ϵ11; ϵ22; ϵ33;2ϵ32;2ϵ31;2ϵ12�T in
the Voigt–Mandel representation of the second order strain tensor
(and analogously for ϵ).

We shall assume that the material properties D and the
assumed strains ϵ within each hexahedral element are uniform.
The stress σ is obtained as

σ ¼ ∂UðϵÞ
∂ϵ

: ð4Þ

Now we shall express the first variation of the functional (1) as

δΠðϵ;uÞ ¼
Z
Ω

∂UðϵÞ
∂ϵ

� δϵþδσ � ϵ�ϵð Þþσ � δϵ�δϵ
� �� �

dΩ�δW;

ð5Þ
where the variation of the stress may be expressed directly as

δσ ¼ ∂2UðϵÞ
∂ϵ2 � δϵ ð6Þ

The matrix of tangent moduli may be identified as

D¼ ∂2UðϵÞ
∂ϵ2 : ð7Þ

As usual, the solution to (5) will follow from

δΠðϵ;uÞ ¼ 0; ð8Þ
but we will achieve this by separating out the second and third
term that link the displacement-related strains and the assumed
strains so that we will require the satisfaction of the balance

equationZ
Ω

∂UðϵÞ
∂ϵ

� δϵ dΩ�δW ¼ 0; ð9Þ

and, separately, the satisfaction of the kinematic equationZ
Ω
δϵ � D � ϵ�ϵð Þþσ � δϵ�δϵ

� �
dΩ¼ 0: ð10Þ

The form of the assumed strains will be derived from (10).
At this point we introduce the finite element approximation.

Expression (10) is evaluated by adding contributions from indivi-
dual finite elements. Therefore (10) may be specialized to the
domain of a single hexahedral finite element ΩðeÞ asZ
ΩðeÞ

δϵ � D � ϵ�ϵð Þþσ � δϵ�δϵ
� �

dΩ¼ 0: ð11Þ

Here we express the strain vectors in dependence on the dis-
placement in the form

ϵ¼ BU and ϵ ¼ BU ð12Þ
where the strain-displacement matrix B is the usual expression
calculated from the gradients of the basis functions, the 24�1
vector U consists of the nodal displacements,

U ¼ u1;u2;…;u8½ �T ð13Þ
and the assumed strain-displacement matrix B will be
derived below.

Substitution of (12) into (11) leads toZ
ΩðeÞ

ðDBδUÞ � B�B
� �

Uþσ � B�B
� �

δU dΩ¼ 0: ð14Þ

Extricating the nodal displacement vectors from underneath the
integral signs we obtain

δU �
Z
ΩðeÞ

ðDBÞ � B�B
� �

dΩ � Uþ
Z
ΩðeÞ

σ � B�B
� �

dΩ � δU ¼ 0: ð15Þ

If we recollect now that σ , D, and B are uniform over the domain
of the element, we are immediately led for each element e to the
condition

δU � D � B �
Z
ΩðeÞ

B�B
� �

dΩ � Uþσ �
Z
ΩðeÞ

B�B
� �

dΩ � δU ¼ 0; ð16Þ

which may be satisfied by takingZ
ΩðeÞ

B�B
� �

dΩ¼ 0: ð17Þ

Thus we are then in a position to define the assumed strain-
displacement matrix as

B ¼
Z
ΩðeÞ

dΩ
� ��1Z

ΩðeÞ
B dΩ¼ V �1

e

Z
ΩðeÞ

B dΩ: ð18Þ

Here Ve is the element volume. The assumed strain-displacement
matrix is the mean of the strain-displacement matrix B over the
domain of the element e, hence the designation of the formulation
as the mean-strain approach.

The strain energy function (2) modified by the steps above thus
reads for a single element

Ψ eðUÞ ¼
Z
Ω
UðϵÞ dΩ¼ VeUðϵÞ where ϵ ¼ BU: ð19Þ

Due to the vanishing of the second term, the functional of Eq. (1)
can be simplified with the introduction of the modified strain
energy as

Π ðuÞ ¼Ψ ðuÞ�W: ð20Þ
We have thus obtained a single-field functional.
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