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a b s t r a c t

This paper reports on the application of the geometric multiscale finite element method for the analysis
of wave propagation in heterogeneous periodic solids. The proposed scheme exploits multi-node ele-
ments to describe the microstructure through a local, auxiliary mesh that resolves the fine scale features,
and that is used to numerically compute a set of interpolation functions employed for elements for-
mulations at the global level. The method is applied for the analysis of the dispersion properties of, and
transient wave propagation in domains featuring periodicity in two dimensions. Band diagram calcu-
lations, wave velocities and time domain computations are conducted on solids discretized using two-
dimensional and three-dimensional multiscale finite element meshes. Results for assemblies with per-
iodic inclusions, phononic stubbed plates and structural lattices illustrate the effectiveness of the
method. Accurate predictions of dispersion relations, wave modes and time domain simulations are
obtained with significant reductions in model size. The presented examples also illustrate some of the
interesting wave characteristics of the considered class of periodic structures, which include wave
directionality and frequency bandgaps.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Extensive research is devoted to the analysis and design of peri-
odic structures and metamaterials for acoustic waves management
[1]. Such assemblies exhibit interesting wave propagation properties
such as bandgaps [1–3], response directionality [4–6], left-
handedness [7], and negative acoustic refraction [8]. All of these
features can be employed for the design of acoustic devices operating
over a broad range of frequencies and length scales. The application of
such concepts can, for example, be used to perform a variety of
acoustics-based signal processing functions at frequencies where
electronics suffer from severe power limitations. In conjunction to
telecommunication and signal processing, potential implications of
the “acoustic wave guiding” technology include among others active
sensing of structural integrity [9], and dissipation of high frequency
modes of vibration [10]. Other novel structural configurations may be
exploited for devices which exhibit acoustic super-lensing, super-
focusing and/or cloaking characteristics [7,8].

Unusual wave properties of the kind mentioned above are
associated with material and structural heterogeneities, which

mostly correspond to periodic modulations of stiffness and inertial
properties. Such modulations may result from the periodic dis-
persion of inclusions of different materials within a matrix [1,5], or
from the microstructural configuration of a given assembly [6,11].
The spatial scales of property and geometry modulations dictate
the range of frequencies at which wave guiding occurs, and
therefore determines the scale and frequency range of application
of a device. Very often the size of the microstructure is comparable
to the wavelength of the propagating wavefield. Hence, the dis-
cretization and simulation of such problems may result in extre-
mely high computational costs as the numerical grid must resolve
both the cell and the microstructure length scales. The need for a
simple and reliable numerical scheme is also motivated by the
emerging field of band structure optimization [12,13] where
numerous repeated calculations are required to converge toward a
desired design configuration.

Many techniques have been developed to predict the relevant
properties of heterogeneous structures and materials, without the
need to fully resolve the smallest spatial scales. For instance,
homogenization based methods have the objective of describing
the overall behavior of an heterogeneous system in terms of
equivalent properties [14–17]. For example, composite materials
are classically analyzed in terms of effective properties based on
rules of mixtures [18]. Also, periodic structural lattices have been
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studied through homogenization strategies whereby the spatial
periodicity is exploited to obtain dynamic equilibrium equations in
the Fourier domain [19–23]. Homogenization methods are known
to provide accurate results if the macroscopic fields are constant or
slowly varying within a single representative volume element.
Typically, such requirements hold far from the boundaries of the
computational domain and when the size of the microstructure is
significantly smaller than the wavelength of deformation.

In order to overcome the limitations of homogenization-based
techniques, significant research effort is focused on the develop-
ment of higher order expansion methods capable of describing the
high frequency response and the dispersive behavior of periodic
media. For example, Fish et al. [24–29] proposed a multi-grid
solver for wave problems in heterogeneous media characterized
by microstructures whose size is comparable to that of the struc-
tural details or the wavelength of a traveling signal. Similarly,
Murakami et al. [30–32] proposed a mixed theory based on high-
order continuum models to simulate elastic wave dispersion in
heterogeneous composite media. More recently, a reduced Bloch
mode expansion method has been introduced by Hussein [33] for
the calculation of band diagrams of periodic solids. The method,
based on a FE discretization of the unit cell, employs a limited
number of Bloch eigenmodes to project the fine-scale eigenvalue
problem onto a reduced subspace selected within the irreducible
Brillouin zone at high symmetry points. Being in line with the well

known concept of modal analysis, the approach maintains accu-
racy while reducing the computation time even if the calculation
of the reduced basis requires explicit solution of the local eigen-
value problem. The idea of using a set of complex Bloch eigen-
modes to formulate a specialized multiscale FEM solver is also
found in the work by Brandsmeier et al. [34].

Despite the outstanding achievements in the field of high-order
homogenization, efficient computation of dispersion and the
simulation of wave propagation in heterogeneous media is still a
considerable challenge. In this paper, the geometric multiscale finite
element method (GMsFEM) recently developed by the authors [35]
is applied to the analysis of wave propagation in heterogeneous
periodic media. In is worth mentioning that this approach was
already shown to be precise and computationally efficient for the
analysis of elastic wave scattering from localized defects [36]. The
approach is based on the formulation of multiscale elements (MSEs)
with an arbitrary number of nodes that are used to model hetero-
geneities occurring at sub-cell length scales. In contrast to other
multiscale strategies [33,34] that require the solution of a complex
eigenvalue problem to construct the enrichment basis, the pro-
posed multiscale shape functions are expressed in terms of a simple
algebraic operator. In addition, the adopted numerical scheme can
be also exploited for the explicit transient simulation of wave pro-
pagation in periodic domains of finite size.

Fig. 1. Periodic assembly with mesh driven by local heterogeneity (a), and MSE-based discretization (b). Detail of MSE of the unit cell with corresponding fine scale
triangulation and partition between local (�) and global ( ) nodes (c).
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