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a b s t r a c t

The main objective of this paper is to show the effectiveness and usefulness of the concept of an
absorbing layer with increasing damping (ALID) in numerical investigations of elastic wave propagation
in unbounded engineering structures. This has been achieved by the authors by a careful investigation of
three different types of structures characterised by gradually increasing geometrical and mathematical
description complexities. The analysis includes propagation of longitudinal elastic waves in a 1-D semi-
infinite isotropic rod, modelled according to the classical 1-mode theory of rods, propagation of coupled
shear and flexural elastic waves in a 1-D semi-infinite isotropic beam modelled according to the
Timoshenko beam theory, as well as propagation of elastic waves in a 3-D semi-infinite isotropic half-
pipe shell modelled by a 6-mode theory of shells. The concept of the ALID has been not only presented
by the authors, but certain relations between the ALID properties and the characteristics of propagating
elastic waves have been given that can help to maximise the ALID performance in terms of its damping
capability. All results of numerical calculations presented by the authors in this work have been obtained
by the use of the Time-domain Spectral Finite Element Method (TD-SFEM).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently various structural health monitoring (SHM) techni-
ques have become the subject of extensive scientific investiga-
tions [1]. Among many techniques used for that purpose those
based on elastic wave propagation and wave scattering have
become widely exploited both experimentally [2] and numeri-
cally [3]. However, in many cases numerical investigations are
strongly influenced by scale factors resulting from the fact that the
lengths of propagating elastic waves are very often much smaller
than characteristic structural dimensions. This usually leads either
to large numerical models of millions degrees of freedom in the
first case [4,5] or unwanted boundary effects [6,7] in the second
case, when only selected parts of structures are investigated. In
that context numerical techniques enabling one not only to reduce
the boundary effects, but also to reduce the size of numerical
models, are strongly sought and required.

It should be noted that unwanted wave reflections from
boundaries may influence or mask reflections resulting from the
presence of structural defects making structural analysis very

complex. In the case of numerical models employed to solve
various wave propagation problems removal of unwanted bound-
ary reflections is equivalent to representing total radiation outside
the area of the study. This problem can be solved by using different
methods such as infinite elements [8], boundary integral
methods [9], non-reflecting boundary conditions [10], as well as
absorbing layer techniques [11].

Infinite element methods are based on special types of ele-
ments with modified properties that are aggregated by standard
finite element routines, but used to model the infinite space. The
application of infinite elements leads to good results in the case of
various static problems, as well as in certain cases of wave
propagation problems, these being electromagnetism and acous-
tics. However, results presented in [12–18] prove that infinite
elements are not suitable for a high accuracy removal of unwanted
boundary reflections in the case of propagation of guided or bulk
waves. Also the area of analysis must be much bigger than the area
of investigation, which results in an increase in the number of
model degrees of freedom.

On the other hand non-reflecting boundary conditions are in
fact special types of boundary conditions used in order to model
wave propagation in unbounded media [19]. These techniques are
based on extra variables used to approximate the infinite dimen-
sions of the media and can be successfully applied in the case of
the Finite Element Method (FEM) or the Finite Difference Method
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(FDM). The model dimensions remain the same as the area under
consideration. These techniques also lead to good results, but they
require certain modifications of standard solution procedures
applied by the FEM or the FDM.

The technique of absorbing layers allows the absorption of
waves that enter the layers. Certain small reflections from the
absorbing layers may exist, but their amplitudes can be reduced by
correct definition of layer parameters. Two techniques based on
the concept of absorbing layers exist in the literature, known as a
perfectly matched layer (PML) or an absorbing layer with increas-
ing damping (ALID). Originally the PML was developed and
employed in the case of electromagnetic waves [20,21], but later
was extended onto the fields of acoustics [22], seismology [23,24],
as well as onto elastic waves [25–28]. Theoretically waves enter
the PML without reflections and decay inside exponentially.
In practice due to various model discontinuities, mainly arising
and present due to numerical reasons between the area under
investigation and the layer, small reflections can be observed. For
this reason a correct definition of PML parameters, like its length
and attenuation, remains essential in order to achieve a proper
and efficient model that leads to good results. On contrary to this
the ALID utilises the concept proposed in [19]. In this case the
absorbing layer is presented by material with its damping proper-
ties increasing along the depth of the layer. This method was
successfully applied for modelling wave propagation in water [29]
and porous media [30].

The main objective of this paper is to show the effectiveness
and usefulness of the concept of an absorbing layer with increas-
ing damping (ALID) in numerical investigations of elastic wave
propagation in unbounded engineering structures. This has been
achieved by the authors by a careful investigation of three
different types of structures characterised by their gradually
increasing geometrical and mathematical description complex-
ities. The analysis included propagation of longitudinal elastic
waves in a 1-D semi-infinite isotropic rod, modelled according to
the classical 1-mode theory of rods [31], propagation of coupled
shear and flexural elastic waves in a 1-D semi-infinite isotropic
beam, modelled according to the Timoshenko beam theory [32], as
well as propagation of elastic waves in a 3-D semi-infinite
isotropic half-pipe shell modelled by a 6-mode theory of
shells [33]. The concept of the ALID has not only been presented
by the authors, but certain relations between the ALID properties and
the characteristics of propagating elastic waves have been given that
can help to maximise the ALID performance in terms of its damping
capability. All results of numerical calculations presented by the
authors in this work have been obtained by the use of the Timed-
domain Spectral Finite Element Method (TD-SFEM) [3].

2. Absorbing layer with increasing damping

The concept of an absorbing layer with increasing damping
(ALID) is well described in [13], however it should be mentioned at
this point that this idea dates back to 1980s [28]. This concept can
be explained by considering a simple 1-D equation of motion in
the time domain, written for the layer using the FEM convention
[34], as

½M�f €qgþ½C�f _qgþ½K�fqg ¼ fFg ð1Þ
where [M], [C] and [K] are the characteristic inertia, damping and
stiffness matrices, respectively, while fqg and fFg are, respectively,
the vectors of nodal displacements and forces dependent on the x
co-ordinate only. The symbols _□ ¼ d=dt and €□ ¼ d2=dt2 denote the
first and second time derivatives, respectively.

Under assumption that the damping matrix [C] within the ALID
is a linear combination of both the inertia [M] and the stiffness [K]

matrices, as well as that harmonic waves can propagate only along
the x-axis, it can be written as

½C� ¼ aðxÞ½M�þbðxÞ½K�; fqg ¼ fq̂ge� iωteikx ð2Þ

where ω and k are the angular frequency and the wave number,
respectively, while a(x) and b(x) are certain smooth scaling
functions that vary along the depth of the ALID in the following
manner:

að0Þ ¼ bð0Þ ¼ 0; aðlÞ ¼ bðlÞ ¼ 1 ð3Þ

where x¼0 corresponds to the structure-layer interface and x¼ l to
the full length of the layer. The symbol i¼

ffiffiffiffiffiffiffiffi
�1

p
denotes the

imaginary unit, while fq̂g is the vector of nodal displacement
amplitudes.

After substitution of relations (2) into (1) and necessary
rearrangement of terms the original equation of motion in the
time domain (1) can be represented in the frequency domain as

�ρ 1þ i
aðxÞ
ω

� �
½ ~M�ω2 q

� �þEð1� iωbðxÞÞ½ ~K� q
� �¼ Ff g ð4Þ

with ½M� ¼ ρ½ ~M� and ½K� ¼ E½ ~K�, and where ρ and E are the
frequency independent material density and elastic modulus,
respectively.

From the equation of motion (4) it arises that both density ρ
and elastic modulus E can be considered as frequency dependent
within the ALID:

ρðωÞ ¼ ρ 1þ i
aðxÞ
ω

� �
; EðωÞ ¼ Eð1� iωbðxÞÞ ð5Þ

which allows us to express the frequency dependent wave number
kðωÞ as

k2ðωÞ ¼ω2ρðωÞ
EðωÞ ¼ω2ρ

E
ðcþ idÞ ð6Þ

where

c¼ 1�aðxÞbðxÞ
1þb2ðxÞω2

; d¼ aðxÞþbðxÞω
ωþb2ðxÞω3

ð7Þ

Based on relations (7) it can be noted that the wave number
kðωÞ is complex with its real and imaginary parts remaining
positive in the case of elastic waves propagating within the ALID
in the positive direction [13]. All such waves are attenuated and
their wave numbers vary over the length of the layer.

It should be mentioned here that the part of the damping
matrix [C] proportional to the stiffness matrix bðxÞ½K� strongly
affects numerical solving of the equation of motion (1). In a
general case of the TD-SFEM and problems related with propaga-
tion of elastic waves the explicit scheme of central differences is
commonly used [3], as the scheme can take full advantage of the
diagonal (1-D or 2-D problems) or semi-diagonal (3-D problems)
forms of the characteristic inertia [M] and preferably damping [C]
matrices. However, the part of the damping matrix bðxÞ½K� is
consistent or full and cannot be effectively diagonalised in this
case. Moreover, it also strongly affects the stability of the central
difference scheme significantly increasing its minimal time step.
On the other hand the part of the damping matrix [C] proportional
to the inertia matrix, i.e. aðxÞ½M�, is practically free of these
drawbacks. For those reasons the damping matrix [C] is usually
assumed in the form

½C� ¼ aðxÞ½M�; bðxÞ ¼ 0 ð8Þ

It can be further assumed that the functions a(x) can be expressed as

aðxÞ ¼ 10αxβ ; α;β40 ð9Þ
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