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a b s t r a c t

This paper provides a three-field finite element formulation for the evaluation of coupled transport–
deformation problems. A stabilized advection–diffusion–reaction model is employed to idealize the
mass transport of an aggressive environmental agent within a solid medium, whereas the deformation
response of the medium is formulated using the mixed finite element approach with pressure and
displacement as unknown variables. The proposed model accurately captures the pressure and pressure
gradient fields that characterize the reaction and advection terms of the mass transport model.
The concentration-dependent viscoplastic deformation response is idealized using a generalized
Johnson–Cook plasticity model. The accuracy characteristics of the proposed three-field formulation
are assessed by numerical simulations, which indicate the significance of accurate estimation of pressure
at high stress gradient zones for correct characterization of mass transport.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Aggressive environmental elements deteriorate the mechanical
performance of material and structural systems subjected to
combined loading and environmental conditions. Examples of
engineering problems that display environmental-deformation
response coupling are manifold. Two problems that have received
significant attention, among others, are hydrogen- and oxygen-
induced embrittlement in metals [1,2].

Predictive computational modeling of the deformation
response of such materials and structures subjected to aggressive
environmental agents remains to be a significant challenge. The
first difficulty is accurately modeling the coupling mechanisms
between the inelastic deformation process and the mass transport
of the aggressive agent into the structural material. The second
difficulty is the development of a computational solution method
to accurately evaluate the response in the presence of the coupling
mechanisms. An extensive literature exists in characterization and
modeling of metals subjected to hydrogen; and to a lesser extent,
oxygen. The mass transport of the aggressive agent into the solid
substrate is often modeled as a diffusion–advection–reaction
problem [3], whereas the mechanical response involves inelastic
deformations induced by the mechanical and thermal loads, as
well as the environmental effects. Time-dependent deterioration
of the mechanical properties is marked by the coupling between

the transport process of the aggressive agent and the deformation
under mechanical and thermal loads. The transport process
typically results in volumetric expansion, hardening, embrittle-
ment, loss of fatigue life and strength [4,5]. On the other hand, the
chemical potential that drives the kinetics of the aggressive agent
ingress is a function of the state of stress and deformation through
formation of trap sites (e.g., dislocations) and microcracks that
enhance the rate of mass transport.

Computational modeling of this phenomenon requires accurate
capturing of the coupling effects between the transport and
deformation mechanisms. Oskay and Haney [6] proposed a
coupled transport–deformation formulation to simulate the
oxygen-induced embrittlement of titanium structures. This for-
mulation does not account for the advection–reaction terms that
become significant at high stress gradient zones. The seminal work
of Sofronis and McMeeking [3] provided the first finite element
model for the coupled hydrogen transport - deformation response
that can describe the hydrogen transport into a metal substrate
around crack tips. This model has been extended to properly
account for transport between trap and lattice sites by Krom
et al. [7]. Ndong-Mefane et al. [8] addressed the potential instabil-
ity problems in advection-dominated transport around crack and
notch tips by employing a stabilized finite element approach. The
advection coefficient, which depends on the pressure gradient, is
typically approximated a posteriori through discrete differentia-
tion of the pressure estimates at the integration points in a
displacement-based finite element solution of the deformation
problem. This leads to significant approximation errors at regions
of high stress gradients such as notch and crack tips.
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In this paper, we propose a three-field computational model for
the evaluation of coupled transport–deformation problems. The
displacement, pressure and concentration fields are evaluated as
independent unknowns. The key novel contribution of the present
paper is the demonstration that the mixed finite element method,
in which the pressure is treated as an independent unknown in
addition to the displacement degrees of freedom, can be employed
to accurately compute the pressure gradient in the deformation
problem. The pressure gradient information, in turn, is employed
to accurately calculate the instantaneous coefficients of the advec-
tion–reaction terms of the mass transport problem. In addition,
the computational model has the following properties: (a) the
mass transport problem is stabilized to accurately describe the
advection-dominated transport in the presence of high stress
gradients (e.g., crack and notch tips); (b) the deformation problem
is evaluated using a tight-coupled two-field (displacement–pres-
sure) formulation, whereas the transport and deformation pro-
cesses are evaluated based on a staggered approach to efficiently
address problems where the time scales associated with the
transport and deformation processes are disparate.

The remainder of the paper is organized as follows: Section 2
provides the mass transport model with diffusion–advection–
reaction terms coupled to a viscoplasticity model. In Section 3,
the finite element model of the coupled physics problems based
on the three-field (displacement–pressure–concentration) model-
ing is described, including the stabilization of the mass transport
problem for advection-dominated problems. The details of the
implementation of the proposed approach is included. Numerical
verification studies to assess the performance of the model in the
context of the oxygen ingress problem in titanium alloys are
discussed in Section 4. Section 5 provides the conclusions and
discussion of future research directions.

2. Problem statement

Consider the domain of an arbitrary solid body, Ω�Rnsd , sub-
jected to an aggressive agent along a part of the domain boundary,
Γ ¼ ∂Ω, as illustrated in Fig. 1 (nsd is the number of space
dimensions). When subjected to elevated boundary concentration,
fluxes applied on the domain boundary or stress gradient fields,
the aggressive agent tends to diffuse into the body. Concurrently,
the solid body is subjected to time varying mechanical loading.
In this section, the governing equations of the aggressive agent
transport and deformation processes are provided, and the
coupling mechanisms between the two physical processes are
described.

2.1. Transport model

We adopt Oriani's equilibrium theory to describe the diffusion
of the aggressive agent into the stressed solid [9]. According to this
theory, the driving force for diffusion is due to the chemical
potential of the aggressive agent:

qiðx; tÞ ¼ �DðTðx; tÞÞ
RTðx; tÞ cðx; tÞμ;iðx; tÞ ð1Þ

in which, qi denotes the components of the mass flux; D the
diffusivity of the aggressive agent within the solid; T the tempera-
ture; R the universal gas constant; μ the chemical potential; and
c the concentration of aggressive agent, given as the weight ratio
of the diffusing agent and the solid substrate within an infinite-
simal control volume. We adopt the index notation in the
problem formulation (i.e., i¼ 1;…;nsd). Repeated indices of the
spatial dimensions indicate summation unless otherwise stated.
A subscript followed by a comma indicates partial derivative
(i.e., f ;i ¼ ∂f =∂xi). x and t parameterize the spatial and temporal
dimensions, respectively. Bold symbol indicates vector notation
(i.e., x¼ ½x1; x2; x3� for nsd ¼ 3). The chemical potential is a function
of the concentration and the state of stress:

μðx; tÞ ¼ μ0þRT lnðcÞ�V cpðx; tÞ ð2Þ
where μ0 denotes the chemical potential at the stress free state
and at equilibrium concentration; p¼ �σii=3 denotes the pres-
sure; V c the partial molar volume of the ingressed gas in the
substrate solid; and σi the components of the stress tensor. Using
Eqs. (1) and (2), the transport equation of the stressed solid is
given as

_c�ðDc;iÞ;i�
DcV c

RT
p;i

 !
;i

¼ 0 ð3Þ

with superscribed dot indicates differentiation with respect to
time. The initial and boundary conditions for the transport
problem are expressed as

cðx; t ¼ 0Þ ¼ c1ðxÞ; xAΩ ð4Þ

cðx; tÞ ¼ c0ðx; tÞ; xAΓc
D ð5Þ

qiniðx; tÞ ¼ 0; xAΓc
N ð6Þ

in which, c1 is the concentration of the aggressive agent at the
natural state of the solid; c0 is the boundary concentration
prescribed along Γc

D �Γ; Γc
D \ Γc

N ¼∅ and Γc
D [ Γc

N ¼Γ; and, ni
are the components of the unit normal vector. Only homogeneous
type Neumann boundary condition is considered for simplicity of
the ensuing formulation, but the formulation can be extended to
arbitrary Neumann or Robin conditions.

The transport process is coupled to the mechanical deforma-
tion through two mechanisms. The first is the stress-dependent
chemical potential of the aggressive agent, which leads to the third
term in the transport equation (Eq. (3)). The second is by linking
the diffusivity to the state of damage within the solid. The effect of
microcracking and damage on diffusivity has been recognized
in geological materials, concrete and metals (e.g., [10–12]).
The diffusivity is assumed to be enhanced as a function of the
defect density (e.g. microcrack) as proposed by Krajcinovic [12].
The effect of evolving defect density on diffusivity is modeled
based on the percolation theory [6] as

Dðω; TÞ ¼D0ð1þDðωÞÞ exp � Q
RT

� �
ð7Þ

where D0 is the pre-exponential constant; Q is the activation
energy; and, DðωÞ is the effect of mechanical damage on

Fig. 1. Coupled transport–deformation processes defined on the problem domain,
Ω.
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