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a b s t r a c t

This paper presents the formulation of beam finite elements based on Deslauriers–Dubuc interpolating
wavelets, also known as Interpolets. Unlike other wavelet families like Daubechies, Interpolets possess
rational filter coefficients, are smooth, symmetric and therefore more suitable for use in numerical
methods. Displacement and rotation shape functions are obtained and presented graphically. Expres-
sions for stiffness matrix and force vector are developed based on connection coefficients, which are
inner products of basis functions and their derivatives. In order to validate the formulation, several
examples with increasing level of complexity are tested and results are compared with analytical and
standard beam element solutions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Finite Element Method (FEM) is a versatile tool for solving
numerical problems. Its main advantage over other methods is its
geometrical flexibility, which allows the use of complex and
irregular meshes. Another known advantage of the FEM is how
it naturally deals with boundary conditions.

Compactly supported wavelets emerged from the need to find
new ways of representing functions with a finite number of
components, especially the ones with high gradients and singula-
rities, other than the traditional Fourier analysis, which requires an
infinite number of components for exact representation. Later, it
was shown that wavelets have several properties that are especially
useful for representing solutions of partial differential equations
(PDEs), such as orthogonality, compact support and exact repre-
sentation of polynomials of a certain degree [1]. These character-
istics allow the efficient and stable calculation of functions at
different levels of resolution, both in time and frequency domain.

In the last three decades, wavelet functions have been widely
used in the solution of numerical problems, such as image
compression and financial analysis. More recently, these functions

have been applied in numerical schemes such as the FEM. Among
these applications are thermal conduction analyses [2] and wave
propagation problems [3,4].

The conventional formulation of the FEM uses polynomials for
interpolating the displacement within the elements (shape func-
tions). This work proposes the use of a different family of functions
called Interpolating Wavelets as basis functions in order to obtain
satisfactory results in terms of stability and convergence with less
refined meshes than the traditional FEM would require.

The most commonly used wavelet family of functions is the one
developed by Ingrid Daubechies [5]. The mathematical founda-
tions for the wavelet theory were formulated for Daubechies
wavelets and then extended to other families.

A complete basis of wavelets can be generated through dilation
and translation of a mother scaling function. This mother function
is defined using a recursive linear combination of these basis
functions, whose weights are called filter coefficients. This recur-
sive scheme is called pyramidal algorithm [6]. Although many
applications use only the wavelet filter coefficients, there are some
which explicitly require the values of the basis functions and their
derivatives at some target points.

Compactly supported wavelets have a finite number of deri-
vatives which can be highly oscillatory. This makes the numerical
evaluation of integrals of their inner products difficult and
unstable [7]. Those integrals are called connection coefficients
and they appear naturally in a Finite Element scheme. Due to
some properties of wavelet functions, these coefficients can be
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obtained by solving an eigenvalue problem using filter
coefficients.

Working with dyadically refined grids, Deslauriers and Dubuc
[8] obtained a new family of wavelets with interpolating proper-
ties, later called Interpolets. Their filter coefficients are obtained
from the autocorrelation of the same order Daubechies' coeffi-
cients. As a consequence, interpolets are symmetric and smooth,
which is especially interesting in numerical analysis. Another
advantage of Interpolets is that their representation of a function
as a weighted sum leads to coefficients which are evaluations of
the same function at target points on a dyadic mesh. Additionally,
the number of vanishing moments of Interpolets is greater than
Daubechies' of the same order, which allows exact representation
of higher degree polynomials. The adoption of interpolating
wavelets in numerical methods has been presented in some works
which have combined wavelets and modified scaling basis func-
tions in a FE scheme [9,10].

The formulation of an Interpolet-based Finite Element system is
demonstrated for one-dimensional beam problems and a general
approach allows different orders of scaling functions to be tested.
Shape functions, stiffness matrices and equivalent nodal forces are
explicitly derived using scaling functions without additional mod-
ifications. Several examples with increasing level of complexity were
studied successfully. Results were accurate not only for displace-
ments but also for rotations and bending moments if compared with
standard beam finite elements.

2. Wavelet theory

Unlike trigonometric functions, the distinguishing feature about
wavelets is that they are localized in space, which allows local
variations of the problem to be analyzed at various levels of
resolution. Thus, multiresolution analysis using orthogonal, com-
pactly supported wavelets has been successfully applied in numerical
simulation.

All the mathematical foundation for wavelet functions is based
on the algorithms for Daubechies wavelets. Wavelet basis are
composed of two kinds of functions: scaling functions (φ) and
wavelet functions (ψ). The two combined form a complete Hilbert
space of square integrable functions. The spaces generated by
scaling and wavelet functions are complementary and both are
based on the same mother function. In the following expressions,
known as the two-scale relation, ak are the scaling function filter
coefficients and N is the Daubechies wavelet order [11].

φðxÞ ¼ ∑
N�1

k ¼ 0
akφð2x�kÞ

ψðxÞ ¼ ∑
N�1

k ¼ 0
ð�1ÞkaN�1�kφð2x�kÞ ð1Þ

In general, there are no analytical expressions for wavelet
functions, which can be obtained using iterative procedures like
Eq. (1). In order to comply with the requirements of orthogonality
and compact support, wavelets present, in general, an irregular
fractal-like shape. Fig. 1 shows Daubechies scaling function of
order N¼4.

2.1. Deslauriers–Dubuc interpolets

The term interpolet was first used by Donoho [12] to designate
wavelets with interpolating characteristics. The basic characteris-
tics of interpolating wavelets require that the mother scaling

function satisfies the following condition [13]:

φðkÞ ¼ δ0;k ¼
1; k¼ 0
0; k ≠ 0

; k∈Z

(
ð2Þ

Any function f(x) can be represented as a linear combination of
the basis functions at level of resolution j:

f ðxÞ ¼ ∑
k∈Z

ckφð2jx�kÞ ¼ ∑
k∈Z

ckφj;kðxÞ ð3Þ

Evaluating the function at a dyadic grid point x¼ 2�jk yields:

f ð2�jkÞ ¼ ∑
r∈Z

crφj;rð2�jkÞ ¼ ∑
r∈Z

crφð2j2�jk�rÞ ¼ ∑
r∈Z

crδk�r ¼ ck ð4Þ

This characteristic is very interesting for numerical applica-
tions, since a function can be represented as a weighted sum in
which the coefficients are evaluations of the same function at
target points on a dyadic mesh:

f ðxÞ ¼ ∑
k∈Z

f ð2�jkÞφð2jx�kÞ ð5Þ

2.2. Interpolet properties

The set of properties summarized in Eq. (6) is valid for
Deslauriers–Dubuc interpolating wavelets. Some of these proper-
ties, like compact support and unit integral are shared with
Daubechies wavelets.

suppðφÞ ¼ ½1�N;N�1�Z þ1

�1
φðxÞdx¼ 1Z þ1

�1
xkψðxÞdx¼ 0; k¼ 0; 1;…; N�1 ð6Þ

On the other hand, orthogonality is not fully satisfied for
interpolating wavelets (Eq. 7), although this is not a crucial issue.Z þ1

�1
φðx�iÞφðx�jÞdx¼

Z þ1

�1
φiðxÞφjðxÞdx ≠ δi;j ð7Þ

The last expression in Eq. (6) derives from the vanishing
moments property, which states that polynomials q(x) of degree
up to N�1 can be exactly represented in a closed interval as a
linear combination of Deslauriers–Dubuc scaling functions of
order N:

qðxÞ ¼ a1 þ a2xþ⋯þ amþ1xm ¼∑
k
qð2�jkÞφj;kðxÞ; m≤N�1 ð8Þ

In Eq. (8), index k varies according to the translations needed to
cover the interval within which the representation is intended.
The number of degrees of freedom (DOFs) of a wavelet scaling
function is given by the number of translations needed to cover a

Fig. 1. Daubechies scaling function of order N¼4.
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